Fast Radio Bursts with Extended Gamma-Ray Emission?

被引:29
作者
Murase, Kohta [1 ,2 ,3 ,4 ]
Meszaros, Peter [1 ,2 ,3 ]
Fox, Derek B. [2 ,3 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Particle & Gravitat Astrophys, University Pk, PA 16802 USA
[4] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
gamma-ray burst: general; gravitational waves; radio continuum: general; stars: magnetars; stars: neutron; INDUCED COMPTON-SCATTERING; GRAVITATIONAL-WAVE; ENERGY INJECTION; ELECTROMAGNETIC COUNTERPARTS; SUPERNOVA REMNANT; AFTERGLOWS; ORIGIN; IMPACT; JETS; LOCALIZATION;
D O I
10.3847/2041-8213/836/1/L6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider some general implications of bright gamma-ray. counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray. detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray. energy is comparable to that of the early afterglow or extended emission of short gamma-ray. bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray. bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
引用
收藏
页数:7
相关论文
共 81 条
[1]   GW150914: The Advanced LIGO Detectors in the Era of First Discoveries [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[2]  
[Anonymous], APJL UNPUB
[3]  
[Anonymous], MNRAS UNPUB
[4]  
[Anonymous], 2010, Evolution of cosmic objects through their physical activity, DOI DOI 10.48550/ARXIV.0710.2006
[5]  
[Anonymous], ARXIV160205165
[6]  
[Anonymous], SVPHU
[7]  
[Anonymous], ARXIV13083720
[8]   The burst alert telescope (BAT) on the Swift MIDEX mission [J].
Barthelmy, SD ;
Barbier, LM ;
Cummings, JR ;
Fenimore, EE ;
Gehrels, N ;
Hullinger, D ;
Krimm, HA ;
Markwardt, CB ;
Palmer, DM ;
Parsons, A ;
Sato, G ;
Suzuki, M ;
Takahashi, T ;
Tashiro, M ;
Tueller, J .
SPACE SCIENCE REVIEWS, 2005, 120 (3-4) :143-164
[9]   On fueling gamma-ray bursts and their afterglows with pulsars [J].
Blackman, EG ;
Yi, IS .
ASTROPHYSICAL JOURNAL, 1998, 498 (01) :L31-L35
[10]   ELECTROMAGNETIC EXTRACTION OF ENERGY FROM KERR BLACK-HOLES [J].
BLANDFORD, RD ;
ZNAJEK, RL .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 179 (02) :433-456