The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data

被引:78
作者
Oehler, Vivian G. [1 ]
Yeung, Ka Yee [2 ]
Choi, Yongjae E. [1 ]
Bumgarner, Roger E. [2 ]
Raftery, Adrian E. [3 ]
Radich, Jerald P. [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA
[2] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
EXPRESSION; IMATINIB; CANCER; CLASSIFICATION; MULTICLASS; PREDICTION; SELECTION; SURVIVAL; BCR/ABL; BIOLOGY;
D O I
10.1182/blood-2009-03-212969
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Currently, limited molecular markers exist that can determine where in the spectrum of chronic myeloid leukemia (CML) progression an individual patient falls at diagnosis. Gene expression profiles can predict disease and prognosis, but most widely used microarray analytical methods yield lengthy gene candidate lists that are difficult to apply clinically. Consequently, we applied a probabilistic method called Bayesian model averaging (BMA) to a large CML microarray dataset. BMA, a supervised method, considers multiple genes simultaneously and identifies small gene sets. BMA identified 6 genes (NOB1, DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3) that discriminated chronic phase (CP) from blast crisis (BC) CML. In CML, phase labels divide disease progression into discrete states. BMA, however, produces posterior probabilities between 0 and 1 and predicts patients in "intermediate" stages. In validation studies of 88 patients, the 6-gene signature discriminated early CP from late CP, accelerated phase, and BC. This distinction between early and late CP is not possible with current classifications, which are based on known duration of disease. BMA is a powerful tool for developing diagnostic tests from microarray data. Because therapeutic outcomes are so closely tied to disease phase, these probabilities can be used to determine a risk-based treatment strategy at diagnosis. (Blood. 2009; 114: 3292-3298)
引用
收藏
页码:3292 / 3298
页数:7
相关论文
共 43 条
[21]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[22]  
Hasford J, 1996, BONE MARROW TRANSPL, V17, pS49
[23]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548
[24]   Comparative analysis of the impact of risk profile and of drug therapy on survival in CML using Sokal's index and a new score [J].
Hehlmann, R ;
Ansari, H ;
Hasford, J ;
Heimpel, H ;
Hossfeld, DK ;
Kolb, HJ ;
Loffler, H ;
Pralle, H ;
Queisser, W ;
Reiter, A ;
Hochhaus, A .
BRITISH JOURNAL OF HAEMATOLOGY, 1997, 97 (01) :76-85
[25]   Bayesian model averaging: A tutorial [J].
Hoeting, JA ;
Madigan, D ;
Raftery, AE ;
Volinsky, CT .
STATISTICAL SCIENCE, 1999, 14 (04) :382-401
[26]   Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer [J].
Hughes, TR ;
Mao, M ;
Jones, AR ;
Burchard, J ;
Marton, MJ ;
Shannon, KW ;
Lefkowitz, SM ;
Ziman, M ;
Schelter, JM ;
Meyer, MR ;
Kobayashi, S ;
Davis, C ;
Dai, HY ;
He, YDD ;
Stephaniants, SB ;
Cavet, G ;
Walker, WL ;
West, A ;
Coffey, E ;
Shoemaker, DD ;
Stoughton, R ;
Blanchard, AP ;
Friend, SH ;
Linsley, PS .
NATURE BIOTECHNOLOGY, 2001, 19 (04) :342-347
[27]   MODEL SELECTION AND ACCOUNTING FOR MODEL UNCERTAINTY IN GRAPHICAL MODELS USING OCCAMS WINDOW [J].
MADIGAN, D ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1535-1546
[28]  
Mauro MJ, 2006, HAEMATOL-HEMATOL J, V91, P152
[29]   A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation [J].
Notari, M ;
Neviani, P ;
Santhanam, R ;
Blaser, BW ;
Chang, JS ;
Galietta, A ;
Willis, AE ;
Roy, DC ;
Caligiuri, MA ;
Marcucci, G ;
Perrotti, D .
BLOOD, 2006, 107 (06) :2507-2516
[30]   The mitochondrial transporter family (SLC25): physiological and pathological implications [J].
Palmieri, F .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2004, 447 (05) :689-709