GENERALIZED INDUCTION OF KAZHDAN-LUSZTIG CELLS

被引:3
作者
Guilhot, Jeremie [1 ,2 ]
机构
[1] Univ Aberdeen, Univ London Kings Coll, Dept Math Sci, Aberdeen AB24 3UE, Scotland
[2] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Coxeter groups; Affine Weyl groups; Hecke algebras; Kazhdan-Lusztig cells; Unequal parameters; AFFINE WEYL GROUPS; DECOMPOSITION;
D O I
10.5802/aif.2468
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Lusztig, we consider a Coxeter group W together with a weight function. Geck showed that the Kazhdan-Lusztig cells of W are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of W which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of W are cells in the whole group, and we decompose the affine Weyl group of type G into left and two-sided cells for a whole class of weight functions.
引用
收藏
页码:1385 / 1412
页数:28
相关论文
共 19 条
[11]  
Kazhdan David, 1980, P S PURE MATH, VXXXVI, P185
[12]   HECKE ALGEBRAS AND JANTZEN GENERIC DECOMPOSITION PATTERNS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1980, 37 (02) :121-164
[13]  
Lusztig G., 1985, Infinite-dimensional Groups with Applications, P275, DOI DOI 10.1007/978-1-4612-1104-410
[14]  
Lusztig George, 1985, Adv. Stud. Pure Math., V6, P255
[15]  
Schonert Martin, 1997, GAP GROUPS ALGORITHM
[16]  
SHI JY, 1994, OSAKA J MATH, V31, P27
[17]  
SHI JY, 1994, TOHOKU MATH J, V46, P105, DOI 10.2748/tmj/1178225804
[18]  
SHI JY, 1986, LECT NOTES MATH, V1179
[19]  
Xi N., 1994, LECT NOTES MATH, V1587