On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function

被引:0
作者
Konyagin, S. V. [1 ]
Korolev, M. A. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
关键词
Riemann zeta function; critical line; joint approximations; logarithms of primes; Vinogradov cup; EXTREME VALUES; SHORT SEGMENTS; FUNCTION S(T); LOWER BOUNDS; FREQUENCY; ARGUMENT;
D O I
10.1134/S0081543822050121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the maximum modulus of the Riemann zeta function zeta(s) increases unboundedly when s = 0.5 + it varies on very short intervals of the critical line, and obtain an explicit lower bound for the growth rate of this maximum. This main result of the paper improves the second author's result of 2014 stating that this maximum becomes greater than any arbitrarily large fixed constant as t increases. We also apply our method of proof to problems of large values of the argument of the zeta function and of irregularities in the distribution of the ordinates of zeros of zeta(s) on very short intervals of the critical line. We prove all these assertions assuming the Riemann hypothesis. The main ingredient of the method is an "effective" lemma on joint approximations of logarithms of prime numbers.
引用
收藏
页码:169 / 188
页数:20
相关论文
共 40 条
  • [1] Arguin L.-P., 2020, THE I, V2007
  • [2] Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line
    Arguin, Louis-Pierre
    Belius, David
    Bourgade, Paul
    Radziwill, Maksym
    Soundararajan, Kannan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) : 500 - 535
  • [3] FREQUENCY OF TITCHMARSHS PHENOMENON FOR ZETA(S) .3.
    BALASUBRAMANIAN, R
    RAMACHANDRA, K
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1977, 86 (04): : 341 - 351
  • [4] BALASUBRAMANIAN R, 1986, HARDY RAMANUJAN J, V9, P1
  • [5] Bohr Harald, 1934, J LOND MATH SOC, V9, P5, DOI [10.1112/jlms/s1-9.1.5, DOI 10.1112/JLMS/S1-9.1.5]
  • [6] Extreme values of the Riemann zeta function and its argument
    Bondarenko, Andriy
    Seip, Kristian
    [J]. MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 999 - 1015
  • [7] LARGE GREATEST COMMON DIVISOR SUMS AND EXTREME VALUES OF THE RIEMANN ZETA FUNCTION
    Bondarenko, Andriy
    Seip, Kristian
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) : 1685 - 1701
  • [8] On large values of the function S(t) on short intervals
    Boyarinov, R. N.
    [J]. MATHEMATICAL NOTES, 2011, 89 (3-4) : 472 - 479
  • [9] Lower bounds for the Riemann zeta function on the critical line
    Changa, ME
    [J]. MATHEMATICAL NOTES, 2004, 76 (5-6) : 859 - 864
  • [10] Sums of Gal and applications
    de la Breteche, Regis
    Tenenbaum, Gerald
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (01) : 104 - 134