The topology at infinity of Coxeter groups and buildings

被引:24
作者
Davis, MN
Meier, J
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Lafayette Coll, Dept Math, Easton, PA 18042 USA
关键词
Coxeter groups; buildings; topology at infinity; duality;
D O I
10.1007/PL00012440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The connectivity at infinity of a finitely generated Coxeter group W is completely determined by topological properties of its nerve L (a finite simplicial complex), For example, W is simply connected at infinity if and only if L and the subcomplexes L - sigma (where sigma ranges over all simplices in L) are simply connected. This characterization extends to locally finite buildings.
引用
收藏
页码:746 / 766
页数:21
相关论文
共 21 条
[1]  
Ancel F. D., 1997, AMS IP STUD ADV MATH, V2, P441
[2]  
Atiyah MF, 1969, J DIFFER GEOM, V3, P1, DOI 10.4310/jdg/1214428815
[3]   C-HOMOLOGY OF CORNERS AND S-ARITHMETIC GROUPS [J].
BOREL, A ;
SERRE, JP .
TOPOLOGY, 1976, 15 (03) :211-232
[4]  
Bourbaki N., 2007, GROUPES ALGEBRES LIE, DOI [10.1007/978-3-540-34491-9, DOI 10.1007/978-3-540-34491-9]
[5]  
Brady N, 2000, T AM MATH SOC, V353, P117
[6]  
BRADY N, IN PRESS TOP APPL
[7]  
BROWN KS, 1989, BUILDINGS
[8]  
Cannon J.W., 1996, ENSEIGN MATH, V42, P215, DOI DOI 10.5169/SEALS-87877
[9]  
Davis M. W., 1994, GEOMETRY COHOMOLOGY, V252, P108
[10]   The cohomology of a Coxeter group with group ring coefficients (vol 91, pg 297, 1998) [J].
Davis, MW .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (03) :635-635