Characterization and modeling of drift noise in Fourier transform spectroscopy: implications for signal processing and detection limits

被引:4
作者
Hazel, G [1 ]
Bucholtz, F [1 ]
Aggarwal, ID [1 ]
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,FIBER & ELECTROOPT RES CTR,BLACKSBURG,VA 24062
来源
APPLIED OPTICS | 1997年 / 36卷 / 27期
关键词
Fourier transform spectroscopy; flicker noise; fractional Brownian motion; mid-IR Spectroscopy; drift noise;
D O I
10.1364/AO.36.006751
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A theoretical analysis of long-term drift noise in Fourier transform spectroscopy is presented. Theoretical predictions are confirmed by experiment. Fractional Brownian motion is employed as a stochastic process model for drift noise. A formulation of minimum detectable signal is given that properly accounts for drift noise. The spectral exponent of the low-frequency drift noise is calculated from experimental data. A frequency-dependent optimal spectrum averaging time is found to exist beyond which the minimum detectable signal increases indefinitely. It is also shown that the minimum detectable signal in an absorbance or transmission measurement degrades indefinitely with the time elapsed since background spectrum acquisition. (C) 1997 Optical Society of America.
引用
收藏
页码:6751 / 6759
页数:9
相关论文
共 14 条
[1]   STATISTICS OF ATOMIC FREQUENCY STANDARDS [J].
ALLAN, DW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :221-&
[2]   ATOMIC TIMEKEEPING AND STATISTICS OF PRECISION SIGNAL GENERATORS [J].
BARNES, JA .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :207-&
[3]   CHARACTERIZATION OF FREQUENCY STABILITY [J].
BARNES, JA ;
CHI, AR ;
CUTLER, LS ;
HEALEY, DJ ;
LEESON, DB ;
MCGUNIGAL, TE ;
MULLEN, JA ;
SMITH, WL ;
SYDNOR, RL ;
VESSOT, RFC ;
WINKLER, GMR .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1971, IM20 (02) :105-+
[4]  
Beran J., 1992, STAT SCI, V7, P404, DOI [10.1214/ss/1177011122, DOI 10.1214/SS/1177011122]
[5]  
Falconer K., 2004, Fractal geometry-mathematical foundations and applications
[6]  
GONG J, 1983, T AM NUCL SOC, V45, P221
[7]   Noisy fractional Brownian motion for detection of perturbations in regular textures [J].
Guillemet, H ;
Benali, H ;
Preteux, F ;
DiPaola, R .
STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 :40-51
[8]   ON ESTIMATING THE SPECTRAL EXPONENT OF FRACTIONAL BROWNIAN-MOTION [J].
LEU, JS ;
PAPAMARCOU, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :233-244
[9]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[10]   SIGNAL-TO-NOISE RATIO CHARACTERISTICS OF AN INDUCTIVELY COUPLED PLASMA FOURIER-TRANSFORM SPECTROMETER [J].
MARRA, S ;
HORLICK, G .
APPLIED SPECTROSCOPY, 1986, 40 (06) :804-813