On the analysis of a coupled kinetic-fluid model with local alignment forces

被引:53
作者
Carrillo, Jose A. [1 ]
Choi, Young-Pil [1 ]
Karper, Trygve K. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2016年 / 33卷 / 02期
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Kinetic-fluid coupled equations; Asymptotic behavior; Flocking; Hydrodynamical limit; NAVIER-STOKES EQUATIONS; HYDRODYNAMIC LIMIT; FLOCKING DYNAMICS; GLOBAL EXISTENCE; ASYMPTOTIC ANALYSIS; PARTICLES REGIME; WEAK SOLUTIONS; VLASOV; SYSTEM; EQUILIBRIUM;
D O I
10.1016/j.anihpc.2014.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier-Stokes equations. The model describes the motion of particles immersed in a Navier-Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and L-P estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler incompressible Navier-Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:273 / 307
页数:35
相关论文
共 29 条
  • [1] [Anonymous], 1984, APPL MATH SCI
  • [2] [Anonymous], 1996, The Cauchy Problems in Kinetic Theory
  • [3] Global existence of strong solution for the Cucker-Smale-Navier-Stokes system
    Bae, Hyeong-Ohk
    Choi, Young-Pil
    Ha, Seung-Yeal
    Kang, Moop-Jin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 2225 - 2255
  • [4] ASYMPTOTIC FLOCKING DYNAMICS OF CUCKER-SMALE PARTICLES IMMERSED IN COMPRESSIBLE FLUIDS
    Bae, Hyeong-Ohk
    Choi, Young-Pil
    Ha, Seung-Yeal
    Kang, Moon-Jin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4419 - 4458
  • [5] Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
  • [6] A WELL-POSEDNESS THEORY IN MEASURES FOR SOME KINETIC MODELS OF COLLECTIVE MOTION
    Canizo, J. A.
    Carrillo, J. A.
    Rosado, J.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) : 515 - 539
  • [7] ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL
    Carrillo, J. A.
    Fornasier, M.
    Rosado, J.
    Toscani, G.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 218 - 236
  • [8] Stability and asymptotic analysis of a fluid-particle interaction model
    Carrillo, Jose A.
    Goudon, Thierry
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) : 1349 - 1379
  • [9] GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM
    Carrillo, Jose A.
    Duan, Renjun
    Moussa, Ayman
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (01) : 227 - 258
  • [10] Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12