Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows

被引:191
作者
Sbragaglia, M.
Benzi, R.
Biferale, L.
Succi, S.
Toschi, F.
机构
[1] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[2] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[4] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy
关键词
D O I
10.1103/PhysRevLett.97.204503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approach based on a lattice version of the Boltzmann kinetic equation for describing multiphase flows in nano- and microcorrugated devices is proposed. We specialize it to describe the wetting-dewetting transition of fluids in the presence of nanoscopic grooves etched on the boundaries. This approach permits us to retain the essential supramolecular details of fluid-solid interactions without surrendering-actually boosting-the computational efficiency of continuum methods. The method is used to analyze the importance of conspiring effects between hydrophobicity and roughness on the global mass flow rate of the microchannel. In particular we show that smart surfaces can be tailored to yield very different mass throughput by changing the bulk pressure. The mesoscopic method is also validated quantitatively against the molecular dynamics results of [Cottin-Bizonne , Nat. Mater. 2, 237 (2003)].
引用
收藏
页数:4
相关论文
共 29 条
[1]   Experimental evidence for a large slip effect at a nonwetting fluid-solid interface [J].
Baudry, J ;
Charlaix, E ;
Tonck, A ;
Mazuyer, D .
LANGMUIR, 2001, 17 (17) :5232-5236
[2]   Mesoscopic two-phase model for describing apparent slip in micro-channel flows [J].
Benzi, R ;
Biferale, L ;
Sbragaglia, M ;
Succi, S ;
Toschi, F .
EUROPHYSICS LETTERS, 2006, 74 (04) :651-657
[3]   Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle [J].
Benzi, R. ;
Biferale, L. ;
Sbragaglia, M. ;
Succi, S. ;
Toschi, F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[4]   Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows [J].
Benzi, R ;
Biferale, L ;
Sbragaglia, M ;
Succi, S ;
Toschi, F .
JOURNAL OF FLUID MECHANICS, 2006, 548 :257-280
[5]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[6]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[7]   HYDRODYNAMIC BOUNDARY-CONDITIONS AND CORRELATION-FUNCTIONS OF CONFINED FLUIDS [J].
BOCQUET, L ;
BARRAT, JL .
PHYSICAL REVIEW LETTERS, 1993, 70 (18) :2726-2729
[8]   Entropic lattice Boltzmann methods [J].
Boghosian, BM ;
Yepez, J ;
Coveney, PV ;
Wager, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2007) :717-766
[9]   Lattice Boltzmann simulations of contact line motion. II. Binary fluids [J].
Briant, AJ ;
Yeomans, JM .
PHYSICAL REVIEW E, 2004, 69 (03) :9
[10]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364