Efficient hierarchical approximation of high-dimensional option pricing problems

被引:50
|
作者
Reisinger, Christoph
Wittum, Gabriel
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Heidelberg, Simulat Technol Ctr, D-69120 Heidelberg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2007年 / 29卷 / 01期
关键词
sparse grids; multigrid methods; option pricing; asymptotic expansions; dimension reduction;
D O I
10.1137/060649616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A major challenge in computational finance is the pricing of options that depend on a large number of risk factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute the underlying asset and determine the dimensionality of the corresponding degenerate parabolic equation. The objective of this article is to show how an efficient discretization can be achieved by hierarchical approximation as well as asymptotic expansions of the underlying continuous problem. The relation to a number of state-of-the-art methods is highlighted.
引用
收藏
页码:440 / 458
页数:19
相关论文
共 50 条
  • [21] A high performance hierarchical cubing algorithm and efficient OLAP in high-dimensional data warehouse
    Hu, Kongfa
    Gong, Zhenzhi
    Da, Qingli
    Chen, Ling
    EMERGING TECHNOLOGIES IN KNOWLEDGE DISCOVERY AND DATA MINING, 2007, 4819 : 357 - +
  • [22] Subquadratic High-Dimensional Hierarchical Clustering
    Abboud, Amir
    Cohen-Addad, Vincent
    Houdrouge, Hussein
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Interpretable Approximation of High-Dimensional Data
    Potts, Daniel
    Schmischke, Michael
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1301 - 1323
  • [24] LAPLACE APPROXIMATION OF HIGH-DIMENSIONAL INTEGRALS
    SHUN, ZM
    MCCULLAGH, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (04): : 749 - 760
  • [25] Approximation of high-dimensional parametric PDEs
    Cohen, Albert
    DeVore, Ronald
    ACTA NUMERICA, 2015, 24 : 1 - 159
  • [26] High-Dimensional Indexing by Sparse Approximation
    Borges, Pedro
    Mourao, Andre
    Magalhaes, Joao
    ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 163 - 170
  • [27] Projection Methods for Dynamical Low-Rank Approximation of High-Dimensional Problems
    Kieri, Emil
    Vandereycken, Bart
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (01) : 73 - 92
  • [28] Compressing the index - A simple and yet efficient approximation approach to high-dimensional indexing
    Wang, SG
    Yu, C
    Ooi, BC
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2001, 2118 : 291 - 302
  • [29] An efficient numerical method for solving high-dimensional nonlinear filtering problems
    Yueh, Mei-Heng
    Lin, Wen-Wei
    Yau, Shing-Tung
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2014, 14 (04) : 243 - 262
  • [30] Neural networks trained with high-dimensional functions approximation data in high-dimensional space
    Zheng, Jian
    Wang, Jianfeng
    Chen, Yanping
    Chen, Shuping
    Chen, Jingjin
    Zhong, Wenlong
    Wu, Wenling
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 3739 - 3750