Efficient hierarchical approximation of high-dimensional option pricing problems

被引:50
作者
Reisinger, Christoph
Wittum, Gabriel
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Heidelberg, Simulat Technol Ctr, D-69120 Heidelberg, Germany
关键词
sparse grids; multigrid methods; option pricing; asymptotic expansions; dimension reduction;
D O I
10.1137/060649616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A major challenge in computational finance is the pricing of options that depend on a large number of risk factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute the underlying asset and determine the dimensionality of the corresponding degenerate parabolic equation. The objective of this article is to show how an efficient discretization can be achieved by hierarchical approximation as well as asymptotic expansions of the underlying continuous problem. The relation to a number of state-of-the-art methods is highlighted.
引用
收藏
页码:440 / 458
页数:19
相关论文
共 24 条
  • [1] [Anonymous], 1994, E W J NUMERICAL MATH
  • [2] PRICING OF OPTIONS AND CORPORATE LIABILITIES
    BLACK, F
    SCHOLES, M
    [J]. JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) : 637 - 654
  • [3] BLACKHAM J, 2004, THESIS OXFORD U OXFO
  • [4] NUMERICAL-METHODS FOR THE NAVIER-STOKES EQUATIONS - APPLICATIONS TO THE SIMULATION OF COMPRESSIBLE AND INCOMPRESSIBLE VISCOUS FLOWS
    BRISTEAU, MO
    GLOWINSKI, R
    PERIAUX, J
    [J]. COMPUTER PHYSICS REPORTS, 1987, 6 (1-6): : 73 - 187
  • [5] BUNGARTZ HJ, 1992, THESIS TU MUNCHEN MU
  • [6] BUNGARTZ HJ, 1998, THESIS TU MUNCHEN MU
  • [7] CARMONA R, 2006, UTILITY INDIFFERENCE
  • [8] Etheridge A., 2002, COURSE FINANCIAL CAL
  • [9] Dimension-adaptive tensor-product quadrature
    Gerstner, T
    Griebel, M
    [J]. COMPUTING, 2003, 71 (01) : 65 - 87
  • [10] Numerical integration using sparse grids
    Gerstner, T
    Griebel, M
    [J]. NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 209 - 232