Efficient hierarchical approximation of high-dimensional option pricing problems

被引:50
|
作者
Reisinger, Christoph
Wittum, Gabriel
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Heidelberg, Simulat Technol Ctr, D-69120 Heidelberg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2007年 / 29卷 / 01期
关键词
sparse grids; multigrid methods; option pricing; asymptotic expansions; dimension reduction;
D O I
10.1137/060649616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A major challenge in computational finance is the pricing of options that depend on a large number of risk factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute the underlying asset and determine the dimensionality of the corresponding degenerate parabolic equation. The objective of this article is to show how an efficient discretization can be achieved by hierarchical approximation as well as asymptotic expansions of the underlying continuous problem. The relation to a number of state-of-the-art methods is highlighted.
引用
收藏
页码:440 / 458
页数:19
相关论文
共 50 条
  • [1] A Local Radial Basis Function Method for High-Dimensional American Option Pricing Problems
    Company, Rafael
    Egorova, Vera N.
    Jodar, Lucas
    Soleymani, Fazlollah
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (01) : 117 - 138
  • [2] On an approximation method for pricing a high-dimensional basket option on assets with mean-reverting prices
    Li, Xun
    Wu, Zhenyu
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (01) : 76 - 89
  • [3] Pricing High-Dimensional Bermudan Options with Hierarchical Tensor Formats
    Bayer, Christian
    Eigel, Martin
    Sallandt, Leon
    Trunschke, Philipp
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (02): : 383 - 406
  • [4] Efficient pricing and calibration of high-dimensional basket options
    Grzelak, Lech A.
    Jablecki, Juliusz
    Gatarek, Dariusz
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (08) : 865 - 888
  • [5] Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems
    Gavrilyuk, IP
    Hackbusch, W
    Khoromskij, BN
    COMPUTING, 2005, 74 (02) : 131 - 157
  • [6] Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems
    Ivan P. Gavrilyuk
    Wolfgang Hackbusch
    Boris N. Khoromskij
    Computing, 2005, 74 : 131 - 157
  • [7] Efficient Implementation of Second-Order Stochastic Approximation Algorithms in High-Dimensional Problems
    Zhu, Jingyi
    Wang, Long
    Spall, James C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3087 - 3099
  • [8] On the approximation of high-dimensional differential equations in the hierarchical Tucker format
    Andreas Arnold
    Tobias Jahnke
    BIT Numerical Mathematics, 2014, 54 : 305 - 341
  • [9] On the approximation of high-dimensional differential equations in the hierarchical Tucker format
    Arnold, Andreas
    Jahnke, Tobias
    BIT NUMERICAL MATHEMATICS, 2014, 54 (02) : 305 - 341
  • [10] EFFICIENT APPROXIMATION OF HIGH-DIMENSIONAL EXPONENTIALS BY TENSOR NETWORKS
    Eigel, M.
    Farchmin, N.
    Heidenreich, S.
    Trunschke, P.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2023, 13 (01) : 25 - 51