Short-term solar irradiance forecasting using convolutional neural networks and cloud imagery

被引:14
作者
Choi, Minsoo [1 ]
Rachunok, Benjamin [1 ]
Nateghi, Roshanak [1 ,2 ,3 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Ctr Environm, W Lafayette, IN 47907 USA
关键词
solar irradiance forecasting; deep learning; convolutional neural network; satellite imagery; remote sensing; renewable energy; PREDICTION;
D O I
10.1088/1748-9326/abe06d
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Access to accurate, generalizable and scalable solar irradiance prediction is critical for smooth solar-grid integration, especially in the light of the accelerated global adoption of solar energy production. Both physical and statistical prediction models of solar irradiance have been proposed in the literature. Physical models require meteorological forecasts-generated by computationally expensive models-to predict solar irradiance, with limited accuracy in sub-daily predictions. Statistical models leverage in-situ measurements which require expensive equipment and do not account for meso-scale atmospheric dynamics. We address these fundamental gaps by developing a convolutional global horizontal irradiance prediction model, using convolutional neural networks and publicly accessible satellite cloud images. Our proposed model predicts solar irradiance in 12 different locations in the US for various prediction time horizons. Our model yields up to 24% improvement in an hour-ahead predictions and 26% in a day-ahead predictions compared to a persistence forecast. Moreover, using saliency maps and target-location-focused cropping, we demonstrate the benefits of incorporating meso-scale atmospheric dynamics for prediction performance. Our results are critical for energy systems planners, utility managers and electricity market participants to ensure efficient harvesting of the solar energy and reliable operation of the grid.
引用
收藏
页数:17
相关论文
共 35 条
[1]   A near real-time satellite-based global drought climate data record [J].
AghaKouchak, Amir ;
Nakhjiri, Navid .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (04)
[2]  
[Anonymous], 1957, EOS T AM GEOPHYS UNI, DOI DOI 10.1029/TR038I001P00038
[3]  
[Anonymous], P 3 INT C LEARN REPR
[4]  
[Anonymous], 2020, WEATHER UNDERGROUND
[5]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[6]  
BERRY EX, 1967, J ATMOS SCI, V24, P688, DOI 10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO
[7]  
2
[8]  
Bishop C.M., 2006, Pattern Recognition and Machine Learning
[9]   One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks [J].
Crisosto, Cristian ;
Hofmann, Martin ;
Mubarak, Riyad ;
Seckmeyer, Gunther .
ENERGIES, 2018, 11 (11)
[10]   Comparison of different physical models for PV power output prediction [J].
Dolara, Alberto ;
Leva, Sonia ;
Manzolini, Giampaolo .
SOLAR ENERGY, 2015, 119 :83-99