Interacting anyons in topological quantum liquids: The golden chain

被引:284
作者
Feiguin, Adrian [1 ]
Trebst, Simon
Ludwig, Andreas W. W.
Troyer, Matthias
Kitaev, Alexei
Wang, Zhenghan
Freedman, Michael H.
机构
[1] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[5] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.98.160409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial ("identity") channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a dynamical critical exponent z=1, and described by a two-dimensional (2D) conformal field theory with central charge c=(7)/(10). An exact mapping of the anyonic chain onto the 2D tricritical Ising model is given using the restricted-solid-on-solid representation of the Temperley-Lieb algebra. The gaplessness of the chain is shown to have topological origin.
引用
收藏
页数:4
相关论文
共 26 条
[11]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[12]   STRING THEORY ON GROUP-MANIFOLDS [J].
GEPNER, D ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 278 (03) :493-549
[13]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[14]   EXACT EXPONENTS FOR INFINITELY MANY NEW MULTICRITICAL POINTS [J].
HUSE, DA .
PHYSICAL REVIEW B, 1984, 30 (07) :3908-3915
[15]  
JONES V, 1984, CR ACAD SCI I-MATH, V298, P505
[16]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[17]   VIRASORO ALGEBRA, VONNEUMANN ALGEBRA AND CRITICAL 8-VERTEX SOS MODELS [J].
KUNIBA, A ;
AKUTSU, Y ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (10) :3285-3288
[18]   NONABELIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
MOORE, G ;
READ, N .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :362-396
[19]   TWO-DIMENSIONAL CRITICAL SYSTEMS LABELED BY DYNKIN DIAGRAMS [J].
PASQUIER, V .
NUCLEAR PHYSICS B, 1987, 285 (01) :162-172
[20]   Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level [J].
Read, N ;
Rezayi, E .
PHYSICAL REVIEW B, 1999, 59 (12) :8084-8092