Interacting anyons in topological quantum liquids: The golden chain

被引:270
作者
Feiguin, Adrian [1 ]
Trebst, Simon
Ludwig, Andreas W. W.
Troyer, Matthias
Kitaev, Alexei
Wang, Zhenghan
Freedman, Michael H.
机构
[1] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[5] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.98.160409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial ("identity") channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a dynamical critical exponent z=1, and described by a two-dimensional (2D) conformal field theory with central charge c=(7)/(10). An exact mapping of the anyonic chain onto the 2D tricritical Ising model is given using the restricted-solid-on-solid representation of the Temperley-Lieb algebra. The gaplessness of the chain is shown to have topological origin.
引用
收藏
页数:4
相关论文
共 26 条
  • [1] The ALPS Project: Open Source Software for Strongly Correlated Systems
    Alet, F.
    Dayal, P.
    Grzesik, A.
    Honecker, A.
    Koerner, M.
    Laeuchli, A.
    Manmana, S. R.
    McCulloch, I. P.
    Michel, F.
    Noack, R. M.
    Schmid, G.
    Schollwoeck, U.
    Stoeckli, F.
    Todo, S.
    Trebst, S.
    Troyer, M.
    Werner, P.
    Wessel, S.
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 : 30 - 35
  • [2] 8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    FORRESTER, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) : 193 - 266
  • [3] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [4] INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY
    BELAVIN, AA
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 333 - 380
  • [5] BONESTEEL NE, CONDMAT0612503
  • [6] CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1984, 240 (04) : 514 - 532
  • [7] CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING
    CARDY, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07): : L385 - L387
  • [8] OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1986, 270 (02) : 186 - 204
  • [9] Loop models and their critical points
    Fendley, Paul
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50): : 15445 - 15475
  • [10] SUPERCONFORMAL INVARIANCE IN 2 DIMENSIONS AND THE TRICRITICAL ISING-MODEL
    FRIEDAN, D
    QIU, Z
    SHENKER, S
    [J]. PHYSICS LETTERS B, 1985, 151 (01) : 37 - 43