Numerically reliable design for proportional and derivative state-feedback decoupling controller

被引:11
作者
Chu, DL
Malabre, M
机构
[1] CNRS, UMR 6597, IRCCYN, F-44321 Nantes 03, France
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
关键词
linear systems; numerical solutions; reliability; stability of numerical method;
D O I
10.1016/S0005-1098(02)00138-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we continue the work in Malabre and Velasquez (Decoupling of linear systems by means of proportional and derivative state feedback, Proceedings of the SCI'94, Wuhan, China, 1994) and Bonilla Estrada and Malabre (IEEE Trans. Automat. Control 45 (2000) 730) and study the row-by-row decoupling problem of linear time-invariant systems by proportional and derivative state feedback. Our contribution, with respect to previous results, is that we develop a numerical method to compute the desired feedback matrices. Our numerical method is only based on orthogonal transformations and hence is numerically reliable. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2121 / 2125
页数:5
相关论文
共 6 条
[1]  
Brunovsky P., 1970, Kybernetika, V6, P173
[2]   Proportional and derivative state-feedback decoupling of linear systems [J].
Estrada, MB ;
Malabre, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (04) :730-733
[3]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[4]  
MALABRE M, 1994, P SCI 94
[5]   COMPLETE DECOUPLING OF LINEAR-MULTIVARIABLE SYSTEMS BY MEANS OF LINEAR STATIC AND DIFFERENTIAL STATE FEEDBACK [J].
TAN, S ;
VANDEWALLE, J .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (04) :1261-1266
[6]   THE GENERALIZED EIGENSTRUCTURE PROBLEM IN LINEAR-SYSTEM THEORY [J].
VANDOOREN, PM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :111-129