Prediction of Coke CSR from Ash Chemistry of Coal Blend

被引:21
|
作者
Nag, Debjani [1 ]
Haldar, S. K. [1 ]
Choudhary, P. K. [1 ]
Banerjee, P. K. [1 ]
机构
[1] Tata Steel, R&D Div, Jamshedpur 831001, Jharkhand, India
关键词
Ash chemistry; Coke reactivity index (CRI); Modified basicity index (MBI); Strength after reaction (CSR); QUALITY;
D O I
10.1080/19392690903218117
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Coke reactivity index (CRI) and coke strength after reaction (CSR) are the most important parameters used to assess the blast-furnace coke quality. The present work describes the possibility of estimating CSR for coke from ash chemistry of coal blends. For development and validation of the regression model, data obtained from the Tata Steel's coke oven battery numbers 8 and 9 were utilized. It was found that CSR is greatly influenced by coal ash chemistry.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 18 条
  • [1] Understanding the Impact of Coal Blend Properties on the Coke Strength
    Ghosh, B.
    Sahoo, B. K.
    Jha, P. K.
    Kushwaha, S. K.
    Chakraborty, B.
    Manjhi, K. K.
    COKE AND CHEMISTRY, 2022, 65 (07) : 253 - 260
  • [2] Effect of plastic range and ash chemistry on hot strength properties of coke
    Jha, Praveen K.
    Singh, Pramod K.
    Kushwaha, Santosh
    Manjhi, K. K.
    Subramanian, G. S., V
    IRONMAKING & STEELMAKING, 2020, 47 (08) : 925 - 928
  • [3] Relationship between coal ash chemistry and electrostatic precipitator opacity
    Gentzis, T
    Goodarzi, F
    ENERGY SOURCES, 1996, 18 (05): : 585 - 600
  • [4] Investigation into the effects of ash-free coal binder and torrefied biomass addition on coke strength and reactivity
    Kim, Gyeong-Min
    Lisandy, Kevin Yohanes
    Isworo, Yanuar Yudhi
    Kim, Jin-Ho
    Jeon, Chung-Hwan
    FUEL, 2018, 212 : 487 - 497
  • [5] Understanding the impact of coal blending decisions on the prediction of coke quality: a data mining approach
    Lauren A. North
    Karen L. Blackmore
    Keith V. Nesbitt
    Kim Hockings
    Merrick R. Mahoney
    International Journal of Coal Science & Technology, 2019, 6 : 207 - 217
  • [6] Understanding the impact of coal blending decisions on the prediction of coke quality: a data mining approach
    North, Lauren A.
    Blackmore, Karen L.
    Nesbitt, Keith V.
    Hockings, Kim
    Mahoney, Merrick R.
    INTERNATIONAL JOURNAL OF COAL SCIENCE & TECHNOLOGY, 2019, 6 (02) : 207 - 217
  • [7] Better Use of Enriched UK Mezhegeyugol Coal in Coking Batch. 2. Composition of Concentrate Fractions and Coke Quality (CSR and CRI)
    Zolotukhin, Y. A.
    Andreichikov, N. S.
    Kraskovskaya, T. F.
    Berkutov, N. A.
    Kupriyanova, S. N.
    Kuprygin, V. V.
    COKE AND CHEMISTRY, 2020, 63 (10) : 455 - 472
  • [8] Better Use of Enriched UK Mezhegeyugol Coal in Coking Batch. 2. Composition of Concentrate Fractions and Coke Quality (CSR and CRI)
    Y. A. Zolotukhin
    N. S. Andreichikov
    T. F. Kraskovskaya
    N. A. Berkutov
    S. N. Kupriyanova
    V. V. Kuprygin
    Coke and Chemistry, 2020, 63 : 455 - 472
  • [9] Bio-coal and bio-coke production from agro residues
    Ahmad, Khwaja Alamgir
    Ahmad, Ejaz
    Al Mesfer, Mohammed K.
    Nigam, K. D. P.
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [10] Prediction of the Performance of On-line Ash Analyzers Used in the Quality Control Process of a Coal Mining System
    Galetakis, M.
    Alevizos, G.
    Pavloudakis, F.
    Roumpos, C.
    Kavouridis, C.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2009, 31 (13) : 1115 - 1130