Estimates for the zeros of differences of meromorphic functions

被引:41
作者
Chen ZongXuan [2 ]
Shon Kwang Ho [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Coll Nat Sci, Pusan 609735, South Korea
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 11期
基金
中国国家自然科学基金;
关键词
complex difference; zero; exponents of convergence; WIMAN-VALIRON METHOD; EQUATIONS;
D O I
10.1007/s11425-009-0159-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a transcendental meromorphic function and g(z) = f (z + c(1)) + f(z + c(2)) - 2f(z) and g(2) (z) = f (z + c(1)) . f (z + c(2)) - f(2)(z). The exponents of convergence of zeros of differences g(z), g(2)(z), g(z)/f(z), and g(2)(z)/f(2)(z) are estimated accurately.
引用
收藏
页码:2447 / 2458
页数:12
相关论文
共 18 条
[1]   On the extension of the Painleve property to difference equations [J].
Ablowitz, MJ ;
Halburd, R ;
Herbst, B .
NONLINEARITY, 2000, 13 (03) :889-905
[2]   Zeros of differences of meromorphic functions [J].
Bergweiler, Walter .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :133-147
[3]  
Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
[4]   On subnormal solutions of second order linear periodic differential equations [J].
Chen, Zong-Xuan ;
Shon, Kwang Ho .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (06) :786-800
[5]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[6]  
CLUNIE J, 1993, J LOND MATH SOC, V47, P309
[7]   ON THE ZEROS OF MEROMORPHIC FUNCTIONS OF THE FORM F(Z)=SIGMA(K=1)INFINITY A(K)/Z-Z(K) [J].
EREMENKO, A ;
LANGLEY, J ;
ROSSI, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1994, 62 :271-286
[8]  
Halburd RG, 2006, ANN ACAD SCI FENN-M, V31, P463
[9]   Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations [J].
Halburd, RG ;
Korhonen, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :477-487
[10]   LOCAL GROWTH OF POWER-SERIES - SURVEY OF WIMAN-VALIRON METHOD [J].
HAYMAN, WK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (03) :317-358