Fundamental Formation of Three-Dimensional Fe3O4 Microcrystals and Practical Application in Anchoring Au as Recoverable Catalyst for Effective Reduction of 4-Nitrophenol

被引:36
作者
Chen, Yue [1 ,2 ]
Wu, Tong [1 ,2 ]
Xing, Guoliang [3 ]
Kou, Yichuan [1 ,2 ]
Li, Boxun [4 ]
Wang, Xinying [5 ]
Gao, Ming [1 ,2 ]
Chen, Lei [1 ,2 ]
Wang, Yaxin [1 ,2 ]
Yang, Jinghai [1 ,2 ]
Liu, Yang [1 ,2 ]
Zhang, Yongjun [1 ,2 ]
Wang, Dandan [6 ]
机构
[1] Jilin Normal Univ, Coll Phys, Siping 136000, Peoples R China
[2] Jilin Normal Univ, Minist Educ, Key Lab Funct Mat Phys & Chem, Changchun 130103, Jilin, Peoples R China
[3] Jilin Special Equipment Inspect & Res Inst, Jilin 132013, Jilin, Peoples R China
[4] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Jilin, Peoples R China
[5] Northeast Elect Power Univ, Sch Engn & Architecture, Jilin 132012, Jilin, Peoples R China
[6] GLOBALFOUNDRIES Singapore Pte Ltd, QRA PFA Chem FA, 60 Woodlands Ind Pk D,St 2, Singapore 738406, Singapore
基金
中国国家自然科学基金;
关键词
GOLD NANOPARTICLES; CORE-SHELL; FE3O4-AT-SIO2; NANOPARTICLES; METAL NANOPARTICLES; MESOPOROUS SILICA; CARBON NANOTUBES; FACILE SYNTHESIS; GREEN SYNTHESIS; MAGNETIC CORE; OXIDE;
D O I
10.1021/acs.iecr.9b02777
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, the three-dimensional (3D) flowerlike porous Fe3O4 microcrystals were prepared by a self-assembly approach with the assistance of ethylene glycol (EG). The generation mechanism of the 3D flowerlike Fe3O4 microcrystals was revealed through controlling the parameters of the hydrothermal reaction time, the molar mass of the urea, and the calcination temperature. The proposed 3D flowerlike Fe3O4 microcrystals exhibited superparamagnetic behaviors with high saturation magnetization (i.e., up to 73.1 emu.g(-1)) at room temperature. The Fe3O4-Au magnetic composites (MCs) were further prepared by a seed deposition process, and surface features were revealed by TEM, XRD, XPS, UV-vis, and SQUID techniques. Compared with the Fe3O4 microcrystals themselves, the Au (similar to 20 nm) covered Fe3O4 microcrystals provided efficient and recyclable catalytic performance (e.g., unprecedented high turnover frequency of 2.874 min(-1)) for 4-nitrophenol (4-NP). More importantly, the proposed Fe3O4-Au MCs could be used to reduce 4-NP for more than six cycles, elaborating that Fe3O4-Au MCs are promising catalysts in the field of environmental purification.
引用
收藏
页码:15151 / 15161
页数:11
相关论文
共 50 条
  • [41] Synthesis and Characterization of Fe3O4@SiO2@MgAl-LDH@Au.Pd as an Efficient and Magnetically Recyclable Catalyst for Reduction of 4-Nitrophenol and Suzuki Coupling Reactions
    Hosseinzadeh, Rahman
    Mavvaji, Mohammad
    Moradi, Iman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (06) : 7525 - 7541
  • [42] Fabrication of magnetically recoverable and reusable MgFe2O4/Ag3PO4 composite for catalytic reduction of 4-Nitrophenol
    Anantharamaiah, P. N.
    Manasa, K. S.
    Kumar, Sunil Y. C.
    SOLID STATE SCIENCES, 2020, 106
  • [43] Fe3O4 nanoparticle decorated novel magnetic metal oxide microcomposites for the catalytic degradation of 4-nitrophenol for wastewater cleaning applications
    Ozkan, Elven Hasanoglu
    Aslan, Naim
    Koc, Mumin Mehmet
    Yetim, Nurdan Kurnaz
    Sari, Nursen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (02) : 1039 - 1053
  • [44] Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes
    Omiduar, Afshan
    Jaleh, Babak
    Nasrollahzadeh, Mahmoud
    Dasmeh, Hamid Reza
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 121 : 339 - 347
  • [45] Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets
    Liu, Jiyang
    Yu, Haojie
    Wang, Li
    APPLIED CATALYSIS A-GENERAL, 2020, 599 (599)
  • [46] Preparation and characterization of multifunctional Fe3O4-coated Ag nanocomposites for catalytic reduction of 4-nitrophenol
    Wang, Jie
    Yang, Xiaoxin
    Li, Anxia
    Cai, Xiulan
    MATERIALS LETTERS, 2018, 220 : 24 - 27
  • [47] Fe3O4/SiO2 nanoparticles coated with polydopamine as a novel magnetite reductant and stabilizer sorbent for palladium ions: Synthetic application of Fe3O4/SiO2@PDA/Pd for reduction of 4-nitrophenol and Suzuki reactions
    Farzad, Elaheh
    Veisi, Hojat
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 60 : 114 - 124
  • [48] APTES-functionalized Fe3O4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction
    Zhong, Yuanhong
    Gu, Yan
    Yu, Lin
    Cheng, Gao
    Yang, Xiaobo
    Sun, Ming
    He, Binbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 547 : 28 - 36
  • [49] Ag-Fe2O3 nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol
    Liu, Shiben
    Chen, Yingjie
    Dong, Lifeng
    MATERIALS RESEARCH EXPRESS, 2016, 3 (07):
  • [50] Synthesis of Bi2O2.75/α-Fe2O3 Nanocomposite by Laser Ablation and Its Application for Catalytic Reduction of 4-Nitrophenol
    Manda, Abdullah A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (01) : 251 - 261