Robust charge carrier by Fe3O4 in Fe3O4/WO3 core-shell photocatalyst loaded on UiO-66(Ti) for urea photo-oxidation

被引:23
|
作者
Bahmani, M. [1 ,2 ]
Dashtian, K. [3 ]
Mowla, D. [1 ,2 ,4 ]
Esmaeilzadeh, F. [1 ,2 ,4 ]
Ghaedi, M. [3 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Chem Engn Dept, Shiraz, Iran
[2] Shiraz Univ, Environm Res Ctr Petr & Petrochem Ind, Sch Chem & Petr Engn, Shiraz, Iran
[3] Univ Yasuj, Chem Dept, Yasuj 7591874831, Iran
[4] Shiraz Univ, Sch Chem & Petr Engn, Enhanced Oil & Gas Recovery Inst, Adv Res Grp Gas Condensate Recovery, Shiraz 7134851154, Iran
关键词
Fe3O4 charge carrier; Urea photo-oxidation; UiO-66(Zr/Ti) electron donor; WO3 electron acceptor; Central composite design; METAL-ORGANIC FRAMEWORK; TAILORED NANOSTRUCTURES; HIGH-EFFICIENCY; OPTIMIZATION; DEGRADATION; REMOVAL; BLUE; ZNO; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1016/j.chemosphere.2020.129206
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a facile four-step hydrothermal method was utilized to deposit a core-shell structure on UiO-66(Zr/Ti) nanoflake (NFs) as a visible-light-driven photocatalyst. The core was magnetic Fe3O4 which served as a charge carrier coated with WO3 shell. The as-prepared photocatalyst was characterized by XRD, VSM, BET, FTIR, FE-SEM, UV-Vis-DRS, and PL techniques which proved successful deposition of Fe3O4@WO3 core/shell particle on UiO-66(Zr/Ti)-NFs. The obtained photocatalyst was subsequently applied for urea photo-oxidation. This magnetically recoverable photocatalyst exhibited superior activity due to its desirable band alignment, high stability, and generation of the photo-induced charge carriers, as well as providing a high surface area with low mass transfer resistance. Fe3O4 core acted as charge-carrier to transport the photogenerated charges of UiO-66(Zr/Ti)-NIFs (electron-donor) to WO3 charge-collectors for effective photoconversion. The central composite design was applied to design the experiments matrix in which flow rate, pH, irradiation time, catalyst mass, and initial urea concentration were considered as operational factors. The optimized condition was found by defining the desirability function. 90% degradation percentage was achieved at 550 mL/min solution flowrate, pH = 7, 120 min irradiation time, 0.22 g UiO-66(Zr)-NFs-Fe3O4@WO3, and 40 mg/L of the initial concentration of urea with the desirability value of 0.89. Such a superior photocatalytic activity of UiO-66-Fe304@WO3 can be ascribed to the reclamation of Fe3O4 as a low bandgap carrier, which accelerated the conveyance of electrons and followed surpassing charge separation. Our present findings open a new strategy to produce a wide range of core-shell heterogeneous catalysts to be applied in photoreactors scale-up. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nonquenching of Charge Carriers by Fe3O4 Core in Fe3O4/ZnO Nanosheet Photocatalyst
    Karunakaran, Chockalingam
    Vinayagamoorthy, Pazhamalai
    Jayabharathi, Jayaraman
    LANGMUIR, 2014, 30 (49) : 15031 - 15039
  • [2] Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation
    Lak, Aidin
    Niculaes, Dina
    Anyfantis, George C.
    Bertoni, Giovanni
    Barthel, Markus J.
    Marras, Sergio
    Cassani, Marco
    Nitti, Simone
    Athanassiou, Athanassia
    Giannini, Cinzia
    Pellegrino, Teresa
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Monosized Core-Shell Fe3O4(Fe)/Au Multifunctional Nanocrystals
    Liu, Hong-Ling
    Wu, Jun-Hua
    Min, Ji Hyun
    Lee, Ju Hun
    Kim, Young Keun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 754 - 758
  • [4] Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles
    Akbari, Hossein
    Zeynali, Hossein
    Bakhshayeshi, Ali
    PHYSICS LETTERS A, 2016, 380 (7-8) : 927 - 936
  • [5] Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate) nanocomposites
    Srivastava, Manish
    Singh, Jay
    Yashpal, Madhu
    Gupta, Dinesh Kumar
    Mishra, R. K.
    Tripathi, Shipra
    Ojha, Animesh K.
    CARBOHYDRATE POLYMERS, 2012, 89 (03) : 821 - 829
  • [6] Fe3O4/BaTiO3 COMPOSITES WITH CORE-SHELL STRUCTURE
    Tanasa, Eugenia
    Andronescu, Ecaterina
    Cernea, Marin
    Oprea, Ovidiu Cristian
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2019, 81 (02): : 171 - 180
  • [7] Fe3O4/BaTiO3 composites with core-shell structure
    Tanasă, Eugenia
    Andronescu, Ecaterina
    Cernea, Marin
    Oprea, Ovidiu Cristian
    UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2019, 81 (02): : 171 - 180
  • [8] In vitro biological evaluations of Fe3O4 compared with core-shell structures of chitosan-coated Fe3O4 and polyacrylic acid-coated Fe3O4 nanoparticles
    Lotfi, Sheida
    Bahari, Ali
    Mahjoub, Soleiman
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (06) : 3497 - 3512
  • [9] Fe3O4 and CdS based bifunctional core-shell nanostructure
    Joseph, Joshy
    Nishad, K. K.
    Sharma, M.
    Gupta, D. K.
    Singh, R. R.
    Pandey, R. K.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (06) : 1471 - 1477
  • [10] Preparation and application of core-shell Fe3O4/polythiophene nanoparticles
    Liu, Hanbin
    Zhuang, Jia
    Yang, Jie
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (12) : 6919 - 6930