Dynamics of interfaces in the Fisher-KPP equation for slowly decaying initial data

被引:1
作者
Ninomiya, Hirokazu [1 ]
Yanagida, Eiji [2 ]
机构
[1] Meiji Univ, Sch Interdisciplinary Math Sci, Nakano Ku, Tokyo 1648525, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
Fisher-KPP equation; Hamilton-Jacobi equation; Dynamics of interfaces; FRONT PROPAGATION; UNSTABLE STATES; CONVERGENCE; DIFFUSION; STABILITY; BEHAVIOR; VELOCITY;
D O I
10.1016/j.jde.2019.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the behavior of solutions of the Fisher-KPP equation when initial data decay slowly in space. First, we show by a comparison technique that the motion of an interface (or a thin transition layer) can be approximated as a level set of a first-order PDE of Hamilton-Jacobi type. Then by the method of characteristics, it is shown that various (but not all) motion of interfaces can be observed by taking initial data appropriately. Finally, we study the large-time behavior of solutions, especially, the existence of similarly expanding interfaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4922 / 4947
页数:26
相关论文
共 22 条
[1]   SHARP INTERFACE LIMIT OF THE FISHER-KPP EQUATION [J].
Alfaro, Matthieu ;
Ducrot, Arnaud .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (01) :1-18
[2]   SHARP INTERFACE LIMIT OF THE FISHER-KPP EQUATION WHEN INITIAL DATA HAVE SLOW EXPONENTIAL DECAY [J].
Alfaro, Matthieu ;
Ducrot, Arnaud .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01) :15-29
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[5]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[6]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[7]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[8]  
Crandall M. G., 1992, Bull. Amer. Math. Soc., V27, P1
[9]   The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach [J].
Diekmann, O ;
Jabin, PE ;
Mischler, S ;
Perthame, B .
THEORETICAL POPULATION BIOLOGY, 2005, 67 (04) :257-271
[10]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99