Some properties of group-theoretical categories

被引:17
作者
Gelaki, Shlomo [1 ]
Naidu, Deepak [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
基金
以色列科学基金会;
关键词
Fusion categories; Group-theoretical categories; FUSION CATEGORIES; MODULE CATEGORIES; HOPF-ALGEBRAS;
D O I
10.1016/j.jalgebra.2009.05.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first show that every group-theoretical category is graded by a certain double coset ring. As a consequence, we obtain a necessary and sufficient condition for a group-theoretical category to be nilpotent. We then give an explicit description of the simple objects in a group-theoretical category (following [O2]) and of the group of invertible objects of a group-theoretical category, in group-theoretical terms. Finally, under certain restrictive conditions, we describe the universal grading group of a group-theoretical category. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2631 / 2641
页数:11
相关论文
共 8 条
[1]  
Drinfeld V., ARXIV07040195
[2]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[3]   Nilpotent fusion categories [J].
Gelaki, Shlomo ;
Nikshych, Dmitri .
ADVANCES IN MATHEMATICS, 2008, 217 (03) :1053-1071
[4]   From subfactors to categories and topology I:: Frobenius algebras in and Morita equivalence of tensor categories [J].
Müger, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (1-2) :81-157
[5]   Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories [J].
Nikshych, Dmitri .
SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01) :145-161
[6]  
Ostrik V, 2003, INT MATH RES NOTICES, V2003, P1507
[7]   Module categories, weak Hopf algebras and modular invariants [J].
Ostrik, V .
TRANSFORMATION GROUPS, 2003, 8 (02) :177-206
[8]  
Robinson D. J. S., 1982, GRAD TEXTS MATH, V80