Absolute and relative Weyl theorems for generalized eigenvalue problems

被引:16
作者
Nakatsukasa, Yuji [1 ]
机构
[1] Univ Calif Davis, Dept Appl Math, Davis, CA 95616 USA
关键词
Weyl's theorem; Generalized eigenvalue problem; Perturbation; Hermitian definite pencil; ACCURATE SINGULAR-VALUES;
D O I
10.1016/j.laa.2009.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weyl-type eigenvalue perturbation theories are derived for Hermitian definite pencils A - lambda B, in which B is positive definite. The results provide a one-to-one correspondence between the original and perturbed eigenvalues, and give a uniform perturbation bound. We give both absolute and relative perturbation results, defined in the standard Euclidean metric instead of the chordal metric that is often used. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 16 条
[11]   Relative perturbation theory: I. Eigenvalue and singular value variations [J].
Li, RC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (04) :956-982
[12]   A PERTURBATION BOUND FOR DEFINITE PENCILS [J].
LI, RC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 179 :191-202
[13]  
Parlett Beresford N, 1980, The symmetric eigenvalue problem
[14]   A TRACE MINIMIZATION ALGORITHM FOR THE GENERALIZED EIGENVALUE PROBLEM [J].
SAMEH, AH ;
WISNIEWSKI, JA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (06) :1243-1259
[15]  
Stewart G. W., 1990, Matrix Perturbation Theory