Absolute and relative Weyl theorems for generalized eigenvalue problems

被引:16
作者
Nakatsukasa, Yuji [1 ]
机构
[1] Univ Calif Davis, Dept Appl Math, Davis, CA 95616 USA
关键词
Weyl's theorem; Generalized eigenvalue problem; Perturbation; Hermitian definite pencil; ACCURATE SINGULAR-VALUES;
D O I
10.1016/j.laa.2009.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weyl-type eigenvalue perturbation theories are derived for Hermitian definite pencils A - lambda B, in which B is positive definite. The results provide a one-to-one correspondence between the original and perturbed eigenvalues, and give a uniform perturbation bound. We give both absolute and relative perturbation results, defined in the standard Euclidean metric instead of the chordal metric that is often used. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2008, Functions of matrices: theory and computation
[2]  
[Anonymous], 1997, Applied numerical linear algebra
[3]  
Bai Z., 2000, TEMPLATES SOLUTION A, DOI DOI 10.1137/1.9780898719581
[4]   On perturbation bounds of generalized eigenvalues for diagonalizable pairs [J].
Chen, Xiao Shan .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :79-86
[5]   ACCURATE SINGULAR-VALUES OF BIDIAGONAL MATRICES [J].
DEMMEL, J ;
KAHAN, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (05) :873-912
[6]   JACOBIS METHOD IS MORE ACCURATE THAN QR [J].
DEMMEL, J ;
VESELIC, K .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1204-1245
[7]   Towards grid-based O(N) density-functional theory methods:: Optimized nonorthogonal orbitals and multigrid acceleration [J].
Fattebert, JL ;
Bernholc, J .
PHYSICAL REVIEW B, 2000, 62 (03) :1713-1722
[8]   ACCURATE SINGULAR-VALUES AND DIFFERENTIAL QD-ALGORITHMS [J].
FERNANDO, KV ;
PARLETT, BN .
NUMERISCHE MATHEMATIK, 1994, 67 (02) :191-229
[9]   The Lidskii-Mirsky-Wielandt theorem - additive and multiplicative versions [J].
Li, CK ;
Mathias, R .
NUMERISCHE MATHEMATIK, 1999, 81 (03) :377-413
[10]  
Li RC, 2003, MATH COMPUT, V72, P715, DOI 10.1090/S0025-5718-02-01449-7