Density functional theory calculations of defect energies using supercells

被引:68
|
作者
Castleton, C. W. M. [1 ]
Hoglund, A. [2 ]
Mirbt, S. [2 ]
机构
[1] Nottingham Trent Univ, Sch Sci & Technol, Nottingham NG11 8NS, England
[2] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
PERIODIC BOUNDARY-CONDITIONS; AUGMENTED-WAVE METHOD; BRILLOUIN-ZONE; POINT-DEFECTS; AB-INITIO; ULTRASOFT PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS; SEMICONDUCTORS; VACANCIES; CRYSTAL;
D O I
10.1088/0965-0393/17/8/084003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reliable calculations of defect properties may be obtained with density functional theory (DFT) using the supercell approximation. We systematically review the known sources of error and suggest how to perform calculations of defect properties in order to minimize errors. We argue that any analytical error-correction scheme relying on electrostatic considerations alone is not appropriate to derive reliable defect formation energies, certainly not for relaxed geometries. Instead we propose finite size scaling of the calculated defect formation energies, and compare the application of this with both fully converged and 'Gamma' (Gamma) point only k-point integration. We provide a recipe for practical DFT calculations which will help to obtain reliable defect formation energies and demonstrate it using examples from III-V semiconductors.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Point defect chemistry in amorphous HfO2: Density functional theory calculations
    Tang, C.
    Ramprasad, R.
    PHYSICAL REVIEW B, 2010, 81 (16)
  • [32] Density functional theory calculations for resveratrol
    Cao, H
    Pan, XL
    Li, C
    Zhou, C
    Deng, FY
    Li, TH
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2003, 13 (11) : 1869 - 1871
  • [33] Formation energies of rutile metal dioxides using density functional theory
    Martinez, J. I.
    Hansen, H. A.
    Rossmeisl, J.
    Norskov, J. K.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [34] Machine-learning-aided density functional theory calculations of stacking fault energies in steel
    Samanta, Amit
    Balaprakash, Prasanna
    Aubry, Sylvie
    Lin, Brian K.
    SCRIPTA MATERIALIA, 2024, 241
  • [35] Linearity condition for orbital energies in density functional theory (V): Extension to excited state calculations
    Imamura, Yutaka
    Suzuki, Kensei
    Iizuka, Takeshi
    Nakai, Hiromi
    CHEMICAL PHYSICS LETTERS, 2015, 618 : 30 - 36
  • [36] Density Functional Theory Orbital Energies for Predicting Ionization Energies
    Salzner, Ulrike
    Baer, Roi
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 1257 - 1260
  • [37] Prediction of methyl C-H bond dissociation energies by density functional theory calculations
    Korth, HG
    Sicking, W
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1997, (04): : 715 - 719
  • [38] Density Functional Theory Calculations of Lithium Adsorption and Insertion to Defect-Free and Defective Graphene
    Okamoto, Yasuharu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (26): : 14009 - 14014
  • [39] Triangle defect states of hexagonal boron nitride atomic layer: Density functional theory calculations
    Yin, Li-Chang
    Cheng, Hui-Ming
    Saito, Riichiro
    PHYSICAL REVIEW B, 2010, 81 (15)
  • [40] Intrinsic electronic defect states of anatase using density functional theory
    Raghav, Abhishek
    Hanindriyo, Adie Tri
    Utimula, Keishu
    Abbasnejad, Mohaddeseh
    Maezono, Ryo
    Panda, Emila
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 184