Sign-changing multi-bump solutions for the Chern-Simons-Schrodinger equations in R2
被引:16
|
作者:
Chen, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Chen, Zhi
[1
]
Tang, Xianhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Tang, Xianhua
[1
]
Zhang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ Technol & Business, Sch Math & Stat, Changsha 410205, Hunan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Zhang, Jian
[2
]
机构:
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Technol & Business, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
In this paper we consider the nonlinear Chern-Simons-Schrodinger equations with general nonlinearity -Delta u +lambda V (vertical bar x vertical bar)u+ (h(2)(vertical bar x vertical bar)/vertical bar x vertical bar(2) +integral(infinity)(vertical bar x vertical bar)h(s)/s u(2)(s) ds) u = f(u), x is an element of R-,(2) where lambda> 0, V is an external potential and h(s) = 1/2 integral(s)(0) ru(2)(r)dr = 1/4 pi integral(Bs) u(2) (x) dx is the so-called Chern-Simons term. Assuming that the external potential V is nonnegative continuous function with a potential well Omega := intV(-1) (0) consisting of k + 1 disjoint components Omega(0), Omega(1), Omega(2) ... , Omega(k), and the nonlinearity f has a general subcritical growth condition, we are able to establish the existence of signchanging multi-bump solutions by using variational methods. Moreover, the concentration behavior of solutions as lambda ->+infinity are also considered.
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
机构:
Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R ChinaHunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
Lv, Dingyang
Yang, Xuxin
论文数: 0引用数: 0
h-index: 0
机构:
Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R ChinaHunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
Liu, Xiangqing
Huang, Yisheng
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Zhang, Chengxiang
Zhang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Deng, Jin
Long, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Long, Wei
Yang, Jianfu
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China