Stochastic Wave-Current Interaction in Thermal Shallow Water Dynamics

被引:16
作者
Holm, Darryl D. [1 ]
Luesink, Erwin [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1007/s00332-021-09682-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Holm (Proc R Soc A Math Phys Eng Sci 471(2176):20140963, 2015) introduced a variational framework for stochastically parametrising unresolved scales of hydrodynamic motion. This variational framework preserves fundamental features of fluid dynamics, such as Kelvin's circulation theorem, while also allowing for dispersive nonlinear wave propagation, both within a stratified fluid and at its free surface. The present paper combines asymptotic expansions and vertical averaging with the stochastic variational framework to formulate a new approach for developing stochastic parametrisation schemes for nonlinear waves in fluid dynamics. The approach is applied to two sequences of shallow water models which descend from Euler's three-dimensional fluid equations with rotation and stratification under approximation by asymptotic expansions and vertical averaging. In the entire family of nonlinear stochastic wave-current interaction equations derived here using this approach, Kelvin's circulation theorem reveals a barotropic mechanism for wave generation of horizontal circulation or convection (cyclogenesis) which is activated whenever the gradients of wave elevation and/or topography are not aligned with the gradient of the vertically averaged buoyancy.
引用
收藏
页数:56
相关论文
共 51 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Bendall T.M., 2019, ARXIV PREPRINT ARXIV
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]  
BENNEY DJ, 1973, STUD APPL MATH, V52, P45
[5]   Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations [J].
Berner, J. ;
Jung, T. ;
Palmer, T. N. .
JOURNAL OF CLIMATE, 2012, 25 (14) :4946-4962
[6]   STOCHASTIC PARAMETERIZATION Toward a New View of Weather and Climate Models [J].
Berner, Judith ;
Achatz, Ulrich ;
Batte, Lauriane ;
Bengtsson, Lisa ;
de la Camara, Alvaro ;
Christensen, Hannah M. ;
Colangeli, Matteo ;
Coleman, Danielle R. B. ;
Crommelin, Daaaan ;
Dolaptchiev, Stamen I. ;
Franzke, Christian L. E. ;
Friederichs, Petra ;
Imkeller, Peter ;
Jarvinen, Heikki ;
Juricke, Stephan ;
Kitsios, Vassili ;
Lott, Francois ;
Lucarini, Valerio ;
Mahajan, Salil ;
Palmer, Timothy N. ;
Penland, Cecile ;
Sakradzija, Mirjana ;
von Storch, Jin-Song ;
Weisheimer, Antje ;
Weniger, Michael ;
Williams, Paul D. ;
Yano, Jun-Ichi .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (03) :565-587
[7]   DISPERSIVE BAROTROPIC EQUATIONS FOR STRATIFIED MESOSCALE OCEAN DYNAMICS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICA D, 1992, 60 (1-4) :1-15
[8]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[9]   Long-time shallow-water equations with a varying bottom [J].
Camassa, R ;
Holm, DD ;
Levermore, CD .
JOURNAL OF FLUID MECHANICS, 1997, 349 :173-189
[10]   Long-time effects of bottom topography in shallow water [J].
CAmassa, R ;
Holm, DD ;
Levermore, CD .
PHYSICA D, 1996, 98 (2-4) :258-286