Condensate oscillations oscillations in a Penrose tiling lattice

被引:1
|
作者
Akdeniz, Z. [1 ]
Vignolo, P. [2 ]
机构
[1] Piri Reis Univ, Fac Sci & Letters, TR-34940 Istanbul, Turkey
[2] Univ Cote Azur, CNRS, Inst Phys Nice, 1361 Route Lucioles, F-06560 Valbonne, France
关键词
Dynamic properties of condensates; Quantum transport; Quasicrystals; CRITICAL WAVE-FUNCTIONS; QUASI-CRYSTAL; LOCALIZATION; SYMMETRY; SYSTEMS; STATES;
D O I
10.1016/j.physe.2017.04.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to.the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape"dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [1] Energy landscape in a Penrose tiling
    Vignolo, Patrizia
    Bellec, Matthieu
    Boehm, Julian
    Camara, Abdoulaye
    Gambaudo, Jean-Marc
    Kuhl, Ulrich
    Mortessagne, Fabrice
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [2] Doped Mott insulator on a Penrose tiling
    Sakai, Shiro
    Takemori, Nayuta
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [3] Bloch oscillations in the absence of a lattice
    Meinert, Florian
    Knap, Michael
    Kirilov, Emil
    Jag-Lauber, Katharina
    Zvonarev, Mikhail B.
    Demler, Eugene
    Nagerl, Hanns-Christoph
    SCIENCE, 2017, 356 (6341) : 945 - +
  • [4] Spin waves in planar quasicrystal of Penrose tiling
    Rychly, J.
    Mieszczak, S.
    Klos, J. W.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 450 : 18 - 23
  • [5] Electronic Structure and Transport in Approximants of the Penrose Tiling
    de Laissardiere, G. Trambly
    Szallas, A.
    Mayou, D.
    ACTA PHYSICA POLONICA A, 2014, 126 (02) : 617 - 620
  • [6] In search of multipolar order on the Penrose tiling
    Vedmedenko, E. Y.
    Mandel, S. Even-Dar
    Lifshitz, R.
    PHILOSOPHICAL MAGAZINE, 2008, 88 (13-15) : 2197 - 2207
  • [7] Squeezing and Entanglement of Density Oscillations in a Bose-Einstein Condensate
    Wade, Andrew C. J.
    Sherson, Jacob F.
    Molmer, Klaus
    PHYSICAL REVIEW LETTERS, 2015, 115 (06)
  • [8] Average unit cell for the Generalized Penrose Tiling
    Chodyn, M.
    Kuczera, P.
    Wolny, J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C88 - C88
  • [9] Configurations of the Penrose Tiling beyond Nearest Neighbors
    Peng Ben-Yi
    Fu Xiu-Jun
    CHINESE PHYSICS LETTERS, 2015, 32 (05)
  • [10] Structure factor for genera ized Penrose tiling
    Chodyn, Maciej
    Kuczera, Pawel
    Wolny, Janusz
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S420 - S420