Nanoscale view of assisted ion transport across the liquid-liquid interface

被引:75
|
作者
Liang, Zhu [1 ]
Bu, Wei [2 ]
Schweighofer, Karl J. [3 ]
Walwark, David J., Jr. [1 ]
Harvey, Jeffrey S. [1 ]
Hanlon, Glenn R. [1 ]
Amoanu, Daniel [4 ]
Erol, Cem [1 ]
Benjamin, Ilan [3 ]
Schlossman, Mark L. [1 ]
机构
[1] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[2] Univ Chicago, Ctr Adv Radiat Sources, ChemMatCARS, Chicago, IL 60637 USA
[3] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[4] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
solvent extraction; interfacial transport; structure; dynamics; SOLVENT-EXTRACTION; NICKEL EXTRACTION; X-RAY; KINETICS; COMPLEXES; CHEMISTRY; COBALT; MODEL;
D O I
10.1073/pnas.1701389115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During solvent extraction, amphiphilic extractants assist the transport of metal ions across the liquid-liquid interface between an aqueous ionic solution and an organic solvent. Investigations of the role of the interface in ion transport challenge our ability to probe fast molecular processes at liquid-liquid interfaces on nanometer-length scales. Recent development of a thermal switch for solvent extraction has addressed this challenge, which has led to the characterization by X-ray surface scattering of interfacial intermediate states in the extraction process. Here, we review and extend these earlier results. We find that trivalent rare earth ions, Y(III) and Er(III), combine with bis(hexadecyl) phosphoric acid (DHDP) extractants to form inverted bilayer structures at the interface; these appear to be condensed phases of small ion-extractant complexes. The stability of this unconventional interfacial structure is verified by molecular dynamics simulations. The ion-extractant complexes at the interface are an intermediate state in the extraction process, characterizing the moment at which ions have been transported across the aqueous-organic interface, but have not yet been dispersed in the organic phase. In contrast, divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the water phase; this result implies that a second process that transports Sr(II) across the interface has yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results suggest a connection between the observed interfacial structures and the extraction mechanism, which ultimately affects the extraction selectivity and kinetics.
引用
收藏
页码:18227 / 18232
页数:6
相关论文
共 50 条