Transcendence of certain series involving binary linear recurrences

被引:5
作者
Kurosawa, Takeshi [1 ]
机构
[1] NTT Corp, NTT, Serv Integrat Labs, Musashino, Tokyo 1808585, Japan
关键词
transcendence; binary linear recurrence;
D O I
10.1016/j.jnt.2006.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Duverney and Nishioka [D. Duverney, Ku. Nishioka, An inductive method for proving the transcendence of certain series, Acta Arith. 110 (4) (2003) 305-330] studied the transcendence of Sigma(k >= 0) Ek(alpha(rk))/Fk(alpha(rk)), where E-k (z), F-k, (z) are polynomials, alpha is an algebraic number, and r is an integer greater than 1, using an inductive method. We extend their inductive method to the case of several variables. This enables us to prove the transcendence of Sigma(k >= 0)' alpha(k)/R-cr(+d)k where& is a binary linear recurrence and {a(k)} is a sequence of algebraic numbers. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 20 条
[1]  
ANDREJEANNIN R, 1991, FIBONACCI QUART, V29, P132
[2]   THE IRRATIONALITY OF CERTAIN INFINITE SERIES [J].
BADEA, C .
GLASGOW MATHEMATICAL JOURNAL, 1987, 29 :221-228
[3]  
BECKER PG, 1994, MATH NACHR, V168, P5
[4]   ON THE TRANSCENDENCE OF CERTAIN SERIES [J].
BUNDSCHUH, P ;
PETHO, A .
MONATSHEFTE FUR MATHEMATIK, 1987, 104 (03) :199-223
[5]   An inductive method for proving the transcendence of certain series [J].
Duverney, D ;
Nishioka, K .
ACTA ARITHMETICA, 2003, 110 (04) :305-330
[6]   Transcendence of certain reciprocal sums of linear recurrences [J].
Duverney, D ;
Kanoko, T ;
Tanaka, TA .
MONATSHEFTE FUR MATHEMATIK, 2002, 137 (02) :115-128
[7]   Transcendence of a fast converging series of rational numbers [J].
Duverney, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 :193-207
[8]   ON SUM OF RECIPROCALS OF FERMAT NUMBERS AND RELATED IRRATIONALITIES [J].
GOLOMB, SW .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (03) :475-&
[9]  
HANCL J, 1993, MATH SLOVACA, V43, P31
[10]  
HOGGATT VE, 1976, FIBONACCI QUART, V14, P453