Ni0.85Se@MoSe2 Nanosheet Arrays as the Electrode for High-Performance Supercapacitors

被引:251
作者
Peng, Hui [1 ,2 ]
Wei, Chunding [1 ]
Wang, Kai [1 ]
Meng, Tianyu [1 ]
Ma, Guofu [2 ]
Lei, Ziqiang [2 ]
Gong, Xiong [1 ]
机构
[1] Univ Akron, Coll Polymer Sci & Polymer Engn, Dept Polymer Engn, Akron, OH 44325 USA
[2] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecoenvironm Related Polymer Mat,Minist Ed, Lanzhou 730070, Peoples R China
基金
美国国家科学基金会;
关键词
supercapacitor; nickel selenide; molybdenum selenide; nanosheet arrays; heterostructure; IN-SITU GROWTH; NI FOAM; MOS2; NANOSTRUCTURES; GRAPHENE; FILM;
D O I
10.1021/acsami.7b02776
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we report novel Ni0.85Se@MoSe2 nanosheet arrays prepared by a facile one-step hydrothermal method through nickel (Ni) foam as Ni precursor and the framework of MoSe2. Owing to the unique interconnection and hierarchical porous nanosheet array architecture, the Ni0.85Se@MoSe2 nanosheet arrays exhibit a high specific capacitance of 774 F g(-1) at the current density of 1 A g(-1),which is almost 2 times higher than that (401 F g(-1)) of the Ni0.85Se matrix and about 7 times greater than that (113 F g(-1)) of the MoSe2 nanoparticles. Moreover, we report an asymmetric supercapacitor (ASC), which is fabricated by using the Ni0.85Se@MoSe2 nanosheet arrays as the positive electrode and the graphene nanosheets (GNS) as the negative electrode, with aqueous KOH as the electrolyte. The Ni0.85Se@MoSe2// GNS ASC possesses an output voltage of 1.6 V, an energy density of 25.5 Wh kg(-1) at a power density of 420 W kg(-1), and a cycling stability of 88% capacitance retention after 5000 cycles. These results indicate that the Ni0.85Se@MoSe2 nanosheet arrays are a good electrode for supercapacitors.
引用
收藏
页码:17068 / 17076
页数:9
相关论文
共 39 条
[1]   Hierarchical Mo9Se11 nanoneedles on nanosheet with enhanced electrochemical properties as a battery-type electrode for asymmetric supercapacitors [J].
Abd Aziz, Radhiyah ;
Muzakir, Saifful Kamaluddin ;
Misnon, Izan Izwan ;
Ismail, Jamil ;
Jose, Rajan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 673 :390-398
[2]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[3]   Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors [J].
Balasingam, Suresh Kannan ;
Lee, Jae Sung ;
Jun, Yongseok .
DALTON TRANSACTIONS, 2015, 44 (35) :15491-15498
[4]  
Bench R, 2016, ADV ENERGY MATER, V6
[5]   Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures [J].
Bradley, Aaron J. ;
Ugeda, Miguel M. ;
da Jornada, Felipe H. ;
Qiu, Diana Y. ;
Ruan, Wei ;
Zhang, Yi ;
Wickenburg, Sebastian ;
Riss, Alexander ;
Lu, Jiong ;
Mo, Sung-Kwan ;
Hussain, Zahid ;
Shen, Zhi-Xun ;
Louie, Steven G. ;
Crommie, Michael F. .
NANO LETTERS, 2015, 15 (04) :2594-2599
[6]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm201301851, 10.1002/adfm.201301851]
[7]   Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors [J].
Cheng, Ding ;
Yang, Yefeng ;
Xie, Jinlei ;
Fang, Changjiang ;
Zhang, Guoqing ;
Xiong, Jie .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (27) :14348-14357
[8]   The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors [J].
Feng, Xiaomiao ;
Chen, Ningna ;
Zhang, Yu ;
Yan, Zhenzhen ;
Liu, Xingfen ;
Ma, Yanwen ;
Shen, Qingming ;
Wang, Lianhui ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) :9178-9184
[9]   Flexible and Highly Scalable V2O5-rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices [J].
Foo, Ce Yao ;
Sumboja, Afriyanti ;
Tan, Daniel Jia Hong ;
Wang, Jiangxin ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[10]   In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells [J].
Gong, Feng ;
Wang, Hong ;
Xu, Xin ;
Zhou, Gang ;
Wang, Zhong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (26) :10953-10958