Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach

被引:5
作者
Horta Dantas, Marcio Jose [1 ]
Sampaio, Rubens [2 ]
Lima, Roberta [2 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38400902 Uberlandia, MG, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Mech Engn, BR-22451900 Rio de Janeiro, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 01期
关键词
Electromechanical system; Periodic orbits; Stability; Asymptotic stability; Nonlinear dynamics; Perturbation theory;
D O I
10.1007/s00033-015-0602-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work a class of time-periodic electromechanical system is investigated. This system is nonhyperbolic. By using Regular Perturbation Theory, results on existence and stability of periodic orbits are obtained. Moreover, the dynamics of this system can be approached in a mathematically rigorous way. These results generalize previous ones obtained for autonomous electromechanical systems.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 11 条
[1]  
[Anonymous], 2006, System dynamics: modeling and simulation of Mechatronic systems
[2]  
[Anonymous], 2009, ORDINARY DIFFERENTIA
[3]   Asymptotically stable periodic orbits of a coupled electromechanical system [J].
Dantas, M. J. H. ;
Sampaio, R. ;
Lima, R. .
NONLINEAR DYNAMICS, 2014, 78 (01) :29-35
[4]  
Dantas M. J. H., 2013, P 12 C DYN SYST THEO, P353
[5]  
Fidlin A., 2006, NONLINEAR OSCILLATIO
[6]  
Hale J. K., 1992, OSCILLATIONS NONLINE
[7]  
Kononenko V. O., 1969, Vibrating systems with limited power-supply
[8]  
Lima R, 2012, MECH COMPUT, VXXXI, P2709
[9]   Two parametric excited nonlinear systems due to electromechanical coupling [J].
Lima, Roberta ;
Sampaio, Rubens .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (03) :931-943
[10]  
Nayfeh A., 1979, Nonlinear oscillations