Orthogonal Subspace Projection-Based Go-Decomposition Approach to Finding Low-Rank and Sparsity Matrices for Hyperspectral Anomaly Detection

被引:59
作者
Chang, Chein-I [1 ,2 ,3 ]
Cao, Hongju [1 ,4 ]
Chen, Shuhan [2 ,5 ]
Shang, Xiaodi [1 ]
Yu, Chunyan [1 ]
Song, Meiping [1 ]
机构
[1] Dalian Maritime Univ, Ctr Hyperspectral Imaging Remote Sensing CHIRS, Informat & Technol Coll, Dalian 116026, Peoples R China
[2] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21250 USA
[3] Providence Univ, Dept Comp Sci & Informat Management, Taichung 02912, Taiwan
[4] Dalian Univ Foreign Languages, Sch Software, Dalian 116044, Peoples R China
[5] Zhejiang Univ, Dept Elect Engn, Hangzhou 310000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 03期
关键词
Go decomposition (GoDec); low-rank and sparsity-matrix decomposition (LRaSMD); minimax-singular value decomposition (MX-SVD); orthogonal subspace projection GoDec (OSP-GoDec); Reed and Xiaoli anomaly detector (RX-AD); virtual dimensionality (VD); VIRTUAL DIMENSIONALITY; SIGNAL SOURCES; ROBUST-PCA; IMAGE; NUMBER; CLASSIFICATION; REPRESENTATION; ALGORITHMS; REDUCTION; ERROR;
D O I
10.1109/TGRS.2020.3002724
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Low-rank and sparsity-matrix decomposition (LRaSMD) has received considerable interests lately. One of effective methods for LRaSMD is called go decomposition (GoDec), which finds low-rank and sparse matrices iteratively subject to the predetermined low-rank matrix order m and sparsity cardinality k. This article presents an orthogonal subspace-projection (OSP) version of GoDec to be called OSPGoDec, which implements GoDec in an iterative process by a sequence of OSPs to find desired low-rank and sparse matrices. In order to resolve the issues of empirically determining p = m + j and k, the well-known virtual dimensionality (VD) is used to estimate p in conjunction with the Kuybeda et al. developed minimax-singular value decomposition (MX-SVD) in the maximum orthogonal complement algorithm (MOCA) to estimate k. Consequently, LRaSMD can be realized by implementing OSP-GoDec using p and k determined by VD and MX-SVD, respectively. Its application to anomaly detection demonstrates that the proposed OSP-GoDec coupled with VD and MX-SVD performs very effectively and better than the commonly used LRaSMD-based anomaly detectors.
引用
收藏
页码:2403 / 2429
页数:27
相关论文
共 76 条
[1]  
[Anonymous], 2011, PROC 28 INT C MACH L
[2]  
[Anonymous], 2013, P 16 INT C ART INT S
[3]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[4]   On the Applications of Robust PCA in Image and Video Processing [J].
Bouwmans, Thierry ;
Javed, Sajid ;
Zhang, Hongyang ;
Lin, Zhouchen ;
Otazo, Ricardo .
PROCEEDINGS OF THE IEEE, 2018, 106 (08) :1427-1457
[5]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[6]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[7]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[8]   Matrix Completion With Noise [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :925-936
[9]  
Cevher V, 2008, LECT NOTES COMPUT SC, V5303, P155, DOI 10.1007/978-3-540-88688-4_12
[10]   RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION [J].
Chandrasekaran, Venkat ;
Sanghavi, Sujay ;
Parrilo, Pablo A. ;
Willsky, Alan S. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (02) :572-596