Generalized Selfadjoint Operators

被引:0
|
作者
Ivasiuk, Ivan Ya. [1 ]
机构
[1] Kyiv Natl Taras Shevchenko Univ, Mech & Math Fac, Dept Math Anal, UA-01033 Kiev, Ukraine
来源
MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS | 2009年 / 190卷
关键词
Selfadjoint operators; generalized selfadjoint operators; Hilbert space rigging;
D O I
10.1007/978-3-7643-9919-1_19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An essential problem in mathematical physics is to introduce and investigate operators perturbed by singular perturbations. Such operators are usually introduced with the aid of the theory of selfadjoint extensions of Hermitian operators. Berezansky and Brasche have proposed another viewpoint (see [3]) from which such objects are constructed by using operators in a Hilbert space chain (rigging). My report is concerned with operators that act from a positive space into a negative space of some Hilbert rigging. We investigate the generalized selfadjointness of such operators.
引用
收藏
页码:329 / 334
页数:6
相关论文
共 50 条
  • [1] ON GENERALIZED SELFADJOINT OPERATORS ON SCALES OF HILBERT SPACES
    Berezansky, Yu. M.
    Brasche, J.
    Nizhnik, L. P.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (03): : 193 - 198
  • [2] Selfadjoint operators and symmetric operators
    Hirasawa, Go
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (3-4): : 529 - 543
  • [3] Congruence of selfadjoint operators
    Guillermina Fongi
    Alejandra Maestripieri
    Positivity, 2009, 13 : 759 - 770
  • [4] Congruence of selfadjoint operators
    Fongi, Guillermina
    Maestripieri, Alejandra
    POSITIVITY, 2009, 13 (04) : 759 - 770
  • [5] Positive Decompositions of Selfadjoint Operators
    Guillermina Fongi
    Alejandra Maestripieri
    Integral Equations and Operator Theory, 2010, 67 : 109 - 121
  • [6] Positive Decompositions of Selfadjoint Operators
    Fongi, Guillermina
    Maestripieri, Alejandra
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (01) : 109 - 121
  • [7] CORRECT AND SELFADJOINT PROBLEMS FOR QUADRATIC OPERATORS
    Parasidis, I. N.
    Tsekrekos, P. C.
    EURASIAN MATHEMATICAL JOURNAL, 2010, 1 (02): : 122 - 135
  • [8] Selfadjoint operators in S-spaces
    Philipp, Friedrich
    Szafraniec, Franciszek Hugon
    Trunk, Carsten
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) : 1045 - 1059
  • [9] Compressions of linearly independent selfadjoint operators
    Rodman, Leiba
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3757 - 3766
  • [10] Differential structure of the Thompson components of selfadjoint operators
    Fongi, Guillermina
    Maestripieri, Alejandra
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 613 - 622