Poisson Multi-Bernoulli Mapping Using Gibbs Sampling

被引:43
作者
Fatemi, Maryam [1 ,2 ]
Granstrom, Karl [1 ]
Svensson, Lennart [1 ]
Ruiz, Francisco J. R. [3 ,4 ]
Hammarstrand, Lars [1 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[2] Autoliv Sverige AB, S-44737 Vargarda, Sweden
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
欧盟地平线“2020”;
关键词
Statistical mapping; extended object; Monte Carlo methods; inference algorithms; sampling methods; Gibbs sampling; SIMULTANEOUS LOCALIZATION; SLAM;
D O I
10.1109/TSP.2017.2675866
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the mapping problem. Using a conjugate prior form, we derive the exact theoretical batch multiobject posterior density of the map given a set of measurements. The landmarks in the map are modeled as extended objects, and the measurements are described as a Poisson process, conditioned on the map. We use a Poisson process prior on the map and prove that the posterior distribution is a hybrid Poisson, multi-Bernoulli mixture distribution. We devise a Gibbs sampling algorithm to sample from the batch multiobject posterior. The proposed method can handle uncertainties in the data associations and the cardinality of the set of landmarks, and is parallelizable, making it suitable for large-scale problems. The performance of the proposed method is evaluated on synthetic data and is shown to outperform a state-of-the-art method.
引用
收藏
页码:2814 / 2827
页数:14
相关论文
共 40 条
[31]  
Montemerlo M, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P593
[32]   Markov chain sampling methods for Dirichlet process mixture [J].
Neal, RM .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) :249-265
[33]  
Owen Art B., 2013, MONTE CARLO THEORY M
[34]  
Robert Christian P., 2013, Monte Carlo Integration, DOI DOI 10.1007/978-1-4757-3071-5
[35]   NUMBER OF PARTITIONS OF SET [J].
ROTA, GC .
AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (05) :498-+
[36]   ON THE REPRESENTATION AND ESTIMATION OF SPATIAL UNCERTAINTY [J].
SMITH, RC ;
CHEESEMAN, P .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1986, 5 (04) :56-68
[37]  
Svensson L., 2011, 14 INT C INF FUS, P1
[38]   Graphical Models, Exponential Families, and Variational Inference [J].
Wainwright, Martin J. ;
Jordan, Michael I. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2008, 1 (1-2) :1-305
[39]   Marginal Multi-Bernoulli Filters: RFS Derivation of MHT, JIPDA, and Association-Based MeMBer [J].
Williams, Jason L. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (03) :1664-1687
[40]   Making Bertha Drive-An Autonomous Journey on a Historic Route [J].
Ziegler, Julius ;
Bender, Philipp ;
Schreiber, Markus ;
Lategahn, Henning ;
Strauss, Tobias ;
Stiller, Christoph ;
Dang, Thao ;
Franke, Uwe ;
Appenrodt, Nils ;
Keller, Christoph G. ;
Kaus, Eberhard ;
Herrtwich, Ralf G. ;
Rabe, Clemens ;
Pfeiffer, David ;
Lindner, Frank ;
Stein, Fridtjof ;
Erbs, Friedrich ;
Enzweiler, Markus ;
Knoeppel, Carsten ;
Hipp, Jochen ;
Haueis, Martin ;
Trepte, Maximilian ;
Brenk, Carsten ;
Tamke, Andreas ;
Ghanaat, Mohammad ;
Braun, Markus ;
Joos, Armin ;
Fritz, Hans ;
Mock, Horst ;
Hein, Martin ;
Zeeb, Eberhard .
IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2014, 6 (02) :8-20