Optimal CUR Matrix Decompositions

被引:46
作者
Boutsidis, Christos [1 ]
Woodruff, David P. [2 ]
机构
[1] Yahoo Labs, New York, NY 10036 USA
[2] IBM Res, Almaden, CA USA
来源
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2014年
关键词
low rank matrix decomposition; SVD; column subset selection; CUR; adaptive sampling; spectral sparsification; leverage scores; input-sparsity-time; MONTE-CARLO ALGORITHMS; RANK; APPROXIMATIONS; COMPUTATION;
D O I
10.1145/2591796.2591819
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The CUR decomposition of an m x n matrix A finds an m x c matrix C with a small subset of c < n columns of A, together with an r x n matrix R with a small subset of r < m rows of A, as well as a c x r low rank matrix U such that the matrix CUR approximates the input matrix A, that is, 11A CUR < (1 5)11A Ak el where 11.11F denotes the Frobenius norm, 0 < s < 1 is an accuracy parameter, and Ak is the best m x n matrix of rank k constructed via the SVD of A. We present input-sparsity-time and deterministic algorithms for constructing such a CUR matrix decomposition of A where c = O(k/s) and r = O(k/s) and rank(U) = k. Up to constant factors, our construction is simultaneously optimal in c, r, and rank(U).
引用
收藏
页码:353 / 362
页数:10
相关论文
共 46 条
[1]   Database-friendly random projections: Johnson-Lindenstrauss with binary coins [J].
Achlioptas, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) :671-687
[2]  
[Anonymous], ARXIV13031849
[3]  
[Anonymous], 2010, ROW SAMPLING MATRIX
[4]  
Batson JD, 2009, ACM S THEORY COMPUT, P255
[5]   Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices [J].
Berry, MW ;
Pulatova, SA ;
Stewart, GW .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (02) :252-269
[6]  
Bien J., 2010, ARXIV10110413
[7]  
Boutsidis C., 2013, SIAM J MATRIX ANAL A
[8]  
Boutsidis C, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P968
[9]  
Boutsidis Christos, 2013, SIAM J COMPUTING SIC
[10]  
CLARKSON K, 2009, P 41 ANN ACM S THEOR