Fractional order Chebyshev-like low-pass filters based on integer order poles

被引:18
作者
AbdelAty, Amr M. [1 ]
Soltan, Ahmed [2 ]
Ahmed, Waleed A. [1 ]
Radwan, Ahmed G. [3 ,4 ]
机构
[1] Fayoum Univ, Engn Math & Phys Dept, Fac Engn, Faiyum, Egypt
[2] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne, Tyne & Wear, England
[3] Cairo Univ, Engn Math & Phys Dept, Fac Engn, Giza, Egypt
[4] Nile Univ, NISC, Giza, Egypt
来源
MICROELECTRONICS JOURNAL | 2019年 / 90卷
关键词
Chebyshev filter; Fractional-order circuit; Fractional-order filter; Fractional calculus; Analog filter design; Fractance; Sallen-Key filter; Stability analysis; Generalized impedance converter; OPTIMIZATION; OSCILLATORS; EXTRACTION; DESIGN; MODEL;
D O I
10.1016/j.mejo.2019.05.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Chebyshev filter is one of the most commonly used prototype filters that approximate the ideal magnitude response. In this paper, a simple and fast approach to create fractional order Chebyshev-like filter using its integer order poles is discussed. The transfer functions for the fractional filters are developed using the integer order poles from the traditional filter. This approach makes this work the first to generate fractional order transfer functions knowing their poles. The magnitude, phase, step responses, and group delay are simulated for different fractional orders showing their Chebyshev-like characteristics while achieving a fractional order slope. Circuit simulations using Advanced Design Systems of active and passive realizations of the proposed filters are also included and compared with Matlab numerical simulations proving the reliability of the design procedure. Experimental results of a two-stage active realization show good accordance with ADS and Matlab results.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 30 条
[1]   On the Analysis and Design of Fractional-Order Chebyshev Complex Filter [J].
AbdelAty, Amr M. ;
Soltan, Ahmed ;
Ahmed, Waleed A. ;
Radwan, Ahmed G. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (03) :915-938
[2]   Extending the concept of analog Butterworth filter for fractional order systems [J].
Acharya, Anish ;
Das, Saptarshi ;
Pan, Indranil ;
Das, Shantanu .
SIGNAL PROCESSING, 2014, 94 :409-420
[3]   Fractional Order Butterworth Filter: Active and Passive Realizations [J].
Ali, A. Soltan ;
Radwan, A. G. ;
Soliman, Ahmed M. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) :346-354
[4]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[5]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[6]  
Dimopoulos HG, 2012, ANALOG CIRC SIG PROC, P1, DOI 10.1007/978-94-007-2190-6
[7]   Comparison between three approximation methods on oscillator circuits [J].
Elwy, Omar ;
Rashad, Somia H. ;
Said, Lobna A. ;
Radwan, Ahmed G. .
MICROELECTRONICS JOURNAL, 2018, 81 :162-178
[8]   Power and energy analysis of fractional-order electrical energy storage devices [J].
Fouda, M. E. ;
Elwakil, A. S. ;
Radwan, A. G. ;
Allagui, A. .
ENERGY, 2016, 111 :785-792
[9]   Field programmable analogue array implementation of fractional step filters [J].
Freeborn, T. J. ;
Maundy, B. ;
Elwakil, A. S. .
IET CIRCUITS DEVICES & SYSTEMS, 2010, 4 (06) :514-524
[10]  
Freeborn T. J., 2015, CIRCUITS SYSTEMS SIG, P1