Highly Tunable Layered Exciton in Bilayer WS2: Linear Quantum Confined Stark Effect versus Electrostatic Doping

被引:14
作者
Das, Sarthak [1 ]
Dandu, Medha [1 ]
Gupta, Garima [1 ]
Murali, Krishna [1 ]
Abraham, Nithin [1 ]
Kallatt, Sangeeth [2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [4 ]
Majumdar, Kausik [1 ]
机构
[1] Indian Inst Sci, Dept Elect Commun Engn, Bangalore 560012, Karnataka, India
[2] Univ Copenhagen, Ctr Quantum Devices, Niels Bohr Inst, Copenhagen, Denmark
[3] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 305044, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 305044, Japan
关键词
bilayer WS2; excitonic reflection; absorption; quantum confined stark effect; ELECTRIC-FIELD; MONOLAYER; MOS2; WSE2; DYNAMICS;
D O I
10.1021/acsphotonics.0c01159
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the 1H monolayer transition metal dichalcogenide, the inversion symmetry is broken, while the reflection symmetry is maintained. On the other hand, in the bilayer, the inversion symmetry is restored, but the reflection symmetry is broken. As a consequence of these contrasting symmetries, here we show that bilayer WS2 exhibits a quantum confined Stark effect (QCSE) that is linear with the applied out-of-plane electric field, in contrast to a quadratic one for a monolayer. The interplay between the unique layer degree of freedom in the bilayer and the field driven partial interconversion between intralayer and interlayer excitons generates a giant tunability of the exciton oscillator strength. This makes bilayer WS2 a promising candidate for an atomically thin, tunable electro-absorption modulator at the exciton resonance, particularly when stacked on top of a graphene layer that provides an ultrafast nonradiative relaxation channel. By tweaking the biasing configuration, we further show that the excitonic response can be largely tuned through electrostatic doping, by efficiently transferring the oscillator strength from neutral to charged exciton. The findings are prospective toward highly tunable, atomically thin, compact, and light, on chip, reconfigurable components for next generation optoelectronics.
引用
收藏
页码:5386 / 5393
页数:8
相关论文
共 59 条
[1]  
Abraham N., 2020, ARXIV201100221
[2]   Excitonic resonances in thin films of WSe2: from monolayer to bulk material [J].
Arora, Ashish ;
Koperski, Maciej ;
Nogajewski, Karol ;
Marcus, Jacques ;
Faugeras, Clement ;
Potemski, Marek .
NANOSCALE, 2015, 7 (23) :10421-10429
[3]  
Arora S, 2017, IRAN J NEONATOL, V8, P1, DOI 10.22038/ijn.2017.16611.1188
[4]   Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe2 [J].
Back, Patrick ;
Zeytinoglu, Sina ;
Ijaz, Aroosa ;
Kroner, Martin ;
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)
[5]   Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure [J].
Ceballos, Frank ;
Bellus, Matthew Z. ;
Chiu, Hsin-Ying ;
Zhao, Hui .
ACS NANO, 2014, 8 (12) :12717-12724
[6]   Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [Invited] [J].
Chakraborty, Chitraleema ;
Mukherjee, Arunabh ;
Qiu, Liangyu ;
Vamivakas, A. Nick .
OPTICAL MATERIALS EXPRESS, 2019, 9 (03) :1479-1487
[7]   Electrical Tuning of Exciton Binding Energies in Monolayer WS2 [J].
Chernikov, Alexey ;
van der Zande, Arend M. ;
Hill, Heather M. ;
Rigosi, Albert F. ;
Velauthapillai, Ajanth ;
Hone, James ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2015, 115 (12)
[8]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[9]   Gate-tunable trion switch for excitonic device applications [J].
Das, Sarthak ;
Kallatt, Sangeeth ;
Abraham, Nithin ;
Majumdar, Kausik .
PHYSICAL REVIEW B, 2020, 101 (08)
[10]   Layer degree of freedom for excitons in transition metal dichalcogenides [J].
Das, Sarthak ;
Gupta, Garima ;
Majumdar, Kausik .
PHYSICAL REVIEW B, 2019, 99 (16)