CONVEX INTEGRATION CONSTRUCTIONS IN HYDRODYNAMICS

被引:34
作者
Buckmaster, Tristan [1 ]
Vicol, Vlad [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] NYU, Courant Inst Math Sci, New York, NY USA
关键词
NAVIER-STOKES EQUATIONS; ENERGY-DISSIPATION RATE; WEAK SOLUTIONS; INCOMPRESSIBLE EULER; IDEAL HYDRODYNAMICS; ONSAGERS CONJECTURE; PARTIAL REGULARITY; INVISCID LIMIT; MILD SOLUTIONS; SINGULAR SET;
D O I
10.1090/bull/1713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent developments in the field of mathematical fluid dynamics which utilize techniques that go under the umbrella name convex integration. In the hydrodynamical context, these methods produce paradoxical solutions to the fluid equations which defy physical laws. These counterintuitive solutions have a number of properties that resemble predictions made by phenomenological theories of fluid turbulence. The goal of this review is to highlight some of these similarities while maintaining an emphasis on rigorous mathematical statements. We focus our attention on the construction of weak solutions for the incompressible Euler, Navier-Stokes, and magneto-hydrodynamic equations which violate these systems' physical energy laws.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 175 条
[1]   Scale Locality of Magnetohydrodynamic Turbulence [J].
Aluie, Hussein ;
Eyink, Gregory L. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[2]  
[Anonymous], 1978, Sov. Math. Doklady
[3]  
[Anonymous], 2009, THESIS
[4]  
[Anonymous], 1994, APPL MATH SCI
[5]  
[Anonymous], 1998, Applied Mathematical Sciences
[6]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[7]   Non-uniqueness for the Euler equations: the effect of the boundary [J].
Bardos, C. ;
Szekelyhidi, L., Jr. ;
Wiedemann, E. .
RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (02) :189-207
[8]   STABILITY OF TWO-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS UNDER THREE-DIMENSIONAL PERTURBATIONS AND INVISCID SYMMETRY BREAKING [J].
Bardos, C. ;
Lopes Filho, M. C. ;
Niu, Dongjuan ;
Nussenzveig Lopes, H. J. ;
Titi, E. S. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :1871-1885
[9]   The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow [J].
Bardos, Claude ;
Titi, Edriss S. ;
Wiedemann, Emil .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (15-16) :757-760
[10]  
Batchelor G. K., 1953, Cambridge Monogr. Mech. Appl. Math.