New support vector algorithms with parametric insensitive/margin model

被引:85
作者
Hao, Pei-Yi [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Informat Management, Kaohsiung 807, Taiwan
关键词
Support vector machines (SVMs); Regression estimation; Classification; Heteroscedastic noise model; Parametric-insensitive model; Parametric-margin model; NETWORKS; INPUT;
D O I
10.1016/j.neunet.2009.08.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a modification of nu-support vector machines (nu-SVM) for regression and classification is described, and the use of a parametric insensitive/margin model with an arbitrary shape is demonstrated. This can be useful in many cases, especially when the noise is heteroscedastic, that is, the noise strongly depends on the input value x. Like the previous nu-SVM, the proposed support vector algorithms have the advantage of using the parameter 0 <= nu <= 1 for controlling the number of support vectors. To be more precise, v is an upper bound on the fraction of training errors and a lower bound on the fraction of support vectors. The algorithms are analyzed theoretically and experimentally. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 73
页数:14
相关论文
共 28 条
  • [1] [Anonymous], 2005, PROC INTERCONF MACH, DOI DOI 10.1145/1102351.1102413
  • [2] Blake C. L., 1998, Uci repository of machine learning databases
  • [3] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [4] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [5] Predictive uncertainty in environmental modelling
    Cawley, Gavin C.
    Janacek, Gareth J.
    Haylock, Malcolm R.
    Dorling, Stephen R.
    [J]. NEURAL NETWORKS, 2007, 20 (04) : 537 - 549
  • [6] Heteroscedastic kernel ridge regression
    Cawley, GC
    Talbot, NLC
    Foxall, RJ
    Dorling, SR
    Mandic, DP
    [J]. NEUROCOMPUTING, 2004, 57 : 105 - 124
  • [7] Choosing multiple parameters for support vector machines
    Chapelle, O
    Vapnik, V
    Bousquet, O
    Mukherjee, S
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 131 - 159
  • [8] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [9] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [10] Drucker H, 1997, ADV NEUR IN, V9, P155