Lower bounds for the number of conjugacy classes of finite groups

被引:9
作者
Keller, Thomas Michael [1 ]
机构
[1] SW Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
PERMUTATION-GROUPS; ORBITS;
D O I
10.1017/S0305004109990090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2000, L. Hethelyi and B. Kulshammer proved that if p is a prime number dividing the order of a finite solvable group G, then G hits at least 2 root p - 1 conjugacy classes. In this paper we show that if p is large, the result remains true for arbitrary finite groups.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 18 条
  • [1] Aschbacher M., 1986, Finite Group Theory
  • [2] PERMUTATION-GROUPS WITHOUT EXPONENTIALLY MANY ORBITS ON THE POWER SET
    BABAI, L
    PYBER, L
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) : 160 - 168
  • [3] Bertram EA, 2006, CONTEMP MATH, V402, P95
  • [4] Dixon J. D., 1971, STRUCTURE LINEAR GRO
  • [5] GAMBINIWEIGEL A, 1993, B AUSTRAL MATH SOC, V48, P495
  • [6] Base sizes and regular orbits for coprime affine permutation groups
    Gluck, D
    Magaard, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 603 - 618
  • [7] On the number of conjugacy classes of a finite solvable group
    Héthelyi, L
    Külshammer, B
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 668 - 672
  • [8] Huppert B, 1967, EUDLICHE GRUPPEN
  • [9] Huppert B., 1957, Math. Z., V68, P126
  • [10] Huppert B., 1998, Character Theory of Finite Groups