Local Sampling and Reconstruction in Spline Signal Spaces and Multiply Generated Spline Signal Spaces

被引:0
|
作者
Xian, Jun [1 ]
Zhu, Jin-hua [1 ]
Wang, Jinping [2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
来源
INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS | 2009年
基金
中国国家自然科学基金;
关键词
SHIFT-INVARIANT SPACES; SUBSPACES; APPROXIMATION; OPERATORS;
D O I
10.1109/CSO.2009.123
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The local reconstruction from samples is one of most desirable properties for many applications in signal processing. Local sampling is practically useful since we need only to consider a signal on a bounded interval and computer can only process only finite samples. However, the local sampling and reconstruction problem has not been given as much attention. Most of known results concern global sampling and reconstruction. In this paper we give local sampling and reconstruction in special shift-invariant spaces, spline subspaces and multiply generated spline subspaces. Some known results are generalized by our results.
引用
收藏
页码:154 / +
页数:2
相关论文
共 50 条
  • [21] Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces
    Akram Aldroubi
    Karlheinz Gröchenig
    Journal of Fourier Analysis and Applications, 2000, 6 : 93 - 103
  • [22] Nonuniform average sampling in multiply generated shift-invariant subspaces of mixed Lebesgue spaces
    Zhang, Qingyue
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (03)
  • [23] Average sampling and reconstruction in shift-invariant spaces and variable bandwidth spaces
    Kumar, Anuj
    Sampath, Sivananthan
    APPLICABLE ANALYSIS, 2020, 99 (04) : 672 - 699
  • [24] SAMPLING AND RECONSTRUCTION IN SPARSE ATOMIC SPACES
    Pohl, Volker
    Tampubolon, Ezra
    Boche, Holger
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6053 - 6057
  • [25] Dynamical sampling in multiply generated shift-invariant spaces (vol 96, pg 760, 2016)
    Zhang, Qingyue
    Liu, Bei
    Li, Rui
    APPLICABLE ANALYSIS, 2017, 96 (05) : 760 - 770
  • [26] Space Mapping of Spline Spaces over Hierarchical T-meshes
    Liu, Jingjing
    Deng, Fang
    Deng, Jiansong
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) : 403 - 438
  • [27] Maximal discrepancy for multiply generated shift-invariant spaces
    Hartmut Führ
    Jun Xian
    Archiv der Mathematik, 2016, 106 : 145 - 153
  • [28] Maximal discrepancy for multiply generated shift-invariant spaces
    Fuehr, Hartmut
    Xian, Jun
    ARCHIV DER MATHEMATIK, 2016, 106 (02) : 145 - 153
  • [29] Frame-based Average Sampling in Multiply Generated Shift-invariant Subspaces of Mixed Lebesgue Spaces
    Jiang, Yingchun
    Li, Jiao
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (03): : 535 - 552
  • [30] Regression Spline-Model in Machine Learning for Signal Prediction and Parameterization
    Shelevytsky, Ihor
    Shelevytska, Victoriya
    Semenova, Kseniia
    Bykov, Ievgen
    LECTURE NOTES IN COMPUTATIONAL INTELLIGENCE AND DECISION MAKING, 2020, 1020 : 158 - 174