Control of cell proliferation in Arabidopsis thaliana by microRNA miR396

被引:444
作者
Rodriguez, Ramiro E. [1 ]
Mecchia, Martin A. [1 ]
Debernardi, Juan M. [1 ]
Schommer, Carla [1 ]
Weigel, Detlef [2 ]
Palatnik, Javier F. [1 ]
机构
[1] Inst Biol Mol & Celular Rosario, RA-2000 Rosario, Santa Fe, Argentina
[2] Max Planck Inst Dev Biol, D-72076 Tubingen, Germany
来源
DEVELOPMENT | 2010年 / 137卷 / 01期
关键词
microRNAs; miR396; GRFs; Arabidopsis; Cell proliferation; Leaf; TCP4; SET ENRICHMENT ANALYSIS; FLORAL ORGAN IDENTITY; GENE-EXPRESSION; LEAF DEVELOPMENT; TRANSCRIPTION FACTORS; ECTOPIC EXPRESSION; LATERAL ORGANS; GROWTH; SIZE; EXPANSION;
D O I
10.1242/dev.043067
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 53 条
[1]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[2]   Antiquity of microRNAs and their targets in land plants [J].
Axtell, MJ ;
Bartel, DP .
PLANT CELL, 2005, 17 (06) :1658-1673
[3]   The early extra petals1 mutant uncovers a role for MicroRNA miR164c in regulating petal number in Arabidopsis [J].
Baker, CC ;
Sieber, P ;
Wellmer, F ;
Meyerowitz, EM .
CURRENT BIOLOGY, 2005, 15 (04) :303-315
[4]   Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs [J].
Bartel, DP ;
Chen, CZ .
NATURE REVIEWS GENETICS, 2004, 5 (05) :396-400
[5]   A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity [J].
Cartolano, Maria ;
Castillo, Rosa ;
Efremova, Nadia ;
Kuckenberg, Markus ;
Zethof, Jan ;
Gerats, Tom ;
Schwarz-Sommer, Zsuzsanna ;
Vandenbussche, Michiel .
NATURE GENETICS, 2007, 39 (07) :901-905
[6]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[7]   A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].
Chen, XM .
SCIENCE, 2004, 303 (5666) :2022-2025
[8]   The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA [J].
Chuck, George ;
Cigan, A. Mark ;
Saeteurn, Koy ;
Hake, Sarah .
NATURE GENETICS, 2007, 39 (04) :544-549
[9]   Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis [J].
Czechowski, T ;
Stitt, M ;
Altmann, T ;
Udvardi, MK ;
Scheible, WR .
PLANT PHYSIOLOGY, 2005, 139 (01) :5-17
[10]  
De Veylder L, 2001, PLANT CELL, V13, P1653, DOI 10.2307/3871392