Metabolic and Mitochondrial Functioning in Chimeric Antigen Receptor (CAR)-T Cells

被引:19
作者
Rad S. M., Ali Hosseini [1 ,2 ,3 ]
Halpin, Joshua Colin [1 ]
Mollaei, Mojtaba [4 ]
Smith Bell, Samuel W. J. [1 ]
Hirankarn, Nattiya [2 ,3 ]
McLellan, Alexander D. [1 ]
机构
[1] Univ Otago, Dept Microbiol & Immunol, Dunedin 9010, Otago, New Zealand
[2] Chulalongkorn Univ, Fac Med, Dept Microbiol, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Ctr Excellence Immunol & Immune Mediated Dis, Bangkok 10330, Thailand
[4] Tarbiat Modares Univ, Sch Med, Dept Immunol, Tehran 1411713116, Iran
关键词
CAR T cell therapy; T cell metabolism; mitochondria; memory T cell; metabolic reprogramming; IMMUNE CHECKPOINT BLOCKADE; CD8(+) T-CELLS; CANCER-IMMUNOTHERAPY; TUMOR MICROENVIRONMENT; GLUTAMINE-METABOLISM; GLUCOSE-METABOLISM; MEMORY; ACTIVATION; DEATH; CD95;
D O I
10.3390/cancers13061229
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary We review the mechanisms of cellular metabolism and mitochondrial function that have potential to impact on the success of chimeric antigen receptor (CAR) T cell therapy. The review focuses readers on mitochondrial functions to allow a better understanding of the complexity of T cell metabolic pathways, energetics and apoptotic/antiapoptotic pathways occurring in CAR T cells. We highlight potential modifications of T cell metabolism and mitochondrial function for the benefit of improved adoptive cellular therapy. Reprogramming metabolism in CAR T cells is an attractive approach to improve antitumour functions, increase persistence and enable adaptation to the nutrient-restricted solid tumour environment. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 141 条
[31]   Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis [J].
Comito, G. ;
Iscaro, A. ;
Bacci, M. ;
Morandi, A. ;
Ippolito, L. ;
Parri, M. ;
Montagnani, I. ;
Raspollini, M. R. ;
Serni, S. ;
Simeoni, L. ;
Giannoni, E. ;
Chiarugi, P. .
ONCOGENE, 2019, 38 (19) :3681-3695
[32]   IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity [J].
Cui, Guoliang ;
Staron, Matthew M. ;
Gray, Simon M. ;
Ho, Ping-Chih ;
Amezquita, Robert A. ;
Wu, Jingxia ;
Kaech, Susan M. .
CELL, 2015, 161 (04) :750-761
[33]   Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members [J].
Cui, Jia ;
Placzek, William J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (01)
[34]   Hypoxia and antitumor CD8+ T cells: An incompatible alliance? [J].
de Silly, Romain Vuillefroy ;
Dietrich, Pierre-Yves ;
Walker, Paul R. .
ONCOIMMUNOLOGY, 2016, 5 (12)
[35]   Phenotypic switch of CD8+ T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells [J].
de Silly, Romain Vuillefroy ;
Ducimetiere, Laura ;
Maroun, Celine Yacoub ;
Dietrich, Pierre-Yves ;
Derouazi, Madiha ;
Walker, Paul R. .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2015, 45 (08) :2263-2275
[36]   Mitochondrial activity in T cells [J].
Desdin-Mico, Gabriela ;
Soto-Heredero, Gonzalo ;
Mittelbrunn, Maria .
MITOCHONDRION, 2018, 41 :51-57
[37]  
Dunkle A.D., 2011, ROLES BCL 2 FAMILY P
[38]   Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines [J].
Dwyer, Connor J. ;
Knochelmann, Hannah M. ;
Smith, Aubrey S. ;
Wyatt, Megan M. ;
Rivera, Guillermo O. Rangel ;
Arhontoulis, Dimitrios C. ;
Bartee, Eric ;
Li, Zihai ;
Rubinstein, Mark P. ;
Paulos, Chrystal M. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[39]   Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect [J].
Felices, Martin ;
Lenvik, Alexander J. ;
McElmurry, Ron ;
Chu, Sami ;
Hinderlie, Peter ;
Bendzick, Laura ;
Geller, Melissa A. ;
Tolar, Jakub ;
Blazar, Bruce R. ;
Miller, Jeffrey S. .
JCI INSIGHT, 2018, 3 (03)
[40]   Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia [J].
Fraietta, Joseph A. ;
Lacey, Simon F. ;
Orlando, Elena J. ;
Pruteanu-Malinici, Iulian ;
Gohil, Mercy ;
Lundh, Stefan ;
Boesteanu, Alina C. ;
Wang, Yan ;
O'Connor, Roddy S. ;
Hwang, Wei-Ting ;
Pequignot, Edward ;
Ambrose, David E. ;
Zhang, Changfeng ;
Wilcox, Nicholas ;
Bedoya, Felipe ;
Dorfmeier, Corin ;
Chen, Fang ;
Tian, Lifeng ;
Parakandi, Harit ;
Gupta, Minnal ;
Young, Regina M. ;
Johnson, F. Brad ;
Kulikovskaya, Irina ;
Liu, Li ;
Xu, Jun ;
Kassim, Sadik H. ;
Davis, Megan M. ;
Levine, Bruce L. ;
Frey, Noelle V. ;
Siegel, Donald L. ;
Huang, Alexander C. ;
Wherry, E. John ;
Bitter, Hans ;
Brogdon, Jennifer L. ;
Porter, David L. ;
June, Carl H. ;
Melenhorst, J. Joseph .
NATURE MEDICINE, 2018, 24 (05) :563-+