CARLESON MEASURES ON CIRCULAR DOMAINS AND CANONICAL EMBEDDINGS OF HARDY SPACES INTO FUNCTION LATTICES

被引:0
作者
Mleczko, Pawel [1 ]
Rzeczkowski, Michal [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-61614 Poznan, Poland
关键词
Hardy spaces; rearrangement-invariant spaces; composition operators; Carleson measures; INTERPOLATION;
D O I
10.1215/17358787-2019-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study general variants of spaces of holomorphic functions on circular domains on the complex plane. We define Hardy-type spaces generated by Banach function lattices, for which we prove the Carleson theorem. We also analyze canonical embeddings of such spaces into appropriate function lattices. Finally, we study composition operators on Hardy-type spaces on circular domains and characterize order-boundedness of such maps.
引用
收藏
页码:864 / 883
页数:20
相关论文
共 22 条
  • [1] [Anonymous], 1982, TRANSLATIONS MATH MO
  • [2] Bennett C., 1988, INTERPOLATION OPERAT, V129
  • [3] Bergh J., 1976, GRUND MATH WISS, V223
  • [4] Chalendar I, 1999, STUD MATH, V136, P255
  • [5] Interpolation between Hardy spaces on circular domains with applications to approximation
    Chalendar, I
    Partington, JR
    [J]. ARCHIV DER MATHEMATIK, 2002, 78 (03) : 223 - 232
  • [6] Conway J. B., 1995, GRADUATE TEXTS MATH, V159
  • [7] Cowen CC, 1995, STUDIES ADV MATH
  • [8] Duren P. L., 1970, Pure and Applied Mathematics, V38
  • [9] Fisher S. D., 1983, FUNCTION THEORY PLAN
  • [10] Garnett J.B, 2005, NEW MATH MONOGR, V2, DOI 10.1017/CBO9780511546617