Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals

被引:29
作者
Ding, Chenfeng [1 ,2 ]
Huang, Lingbo [1 ]
Yan, Xiaodong [3 ]
Dunne, Francis [2 ]
Hong, Song [1 ]
Lan, Jinle [1 ]
Yu, Yunhua [1 ]
Zhong, Wei-Hong [2 ]
Yang, Xiaoping [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[3] Jiangnan Univ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
关键词
bacterial cellulose; carbon aerogels; hard carbon; pressure-response; supercapacitors; BACTERIAL CELLULOSE; GRAPHENE OXIDE; MECHANICALLY ROBUST; COMPACT FILMS; HIGH AREAL; NITROGEN; AEROGELS; SUPERCAPACITORS; ULTRALIGHT; REDUCTION;
D O I
10.1002/adfm.201907486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advancement in developing superelastic carbon aerogels is highly demanded in new industry sectors, particularly in wearable functional electronics for artificial intelligence applications. However, it is very challenging to increase the compressive strength and electrical conductivity while lowering the density of carbon aerogels. Here, an ultralight and superelastic hard carbon aerogel with in situ ultrafine carbon crystals is reported. Based on a novel precursor prepared from self-assembling bacterial cellulose and thiourea molecules, the resulting aerogel possesses a unique cellular structure and simultaneously exhibits remarkable compressive and electrical properties with ultralow density in addition to excellent compressive cyclability. Specifically, the normalized compression strength and electrical conductivity are up to 20 and 10 times, respectively, of reported carbon aerogels. Armed with the compressed aerogel electrodes, the supercapacitor exhibits excellent electrochemical performance in areal capacitance, rate capability, and high-power cyclic stability. Furthermore, the supercapacitor displays distinguished pressure-response capacitive signal and excellent signal cyclicality. This study provides a unique carbon aerogel for advanced wearable monitoring and energy storage systems.
引用
收藏
页数:10
相关论文
共 85 条
  • [1] Mesoscale assembly of chemically modified graphene into complex cellular networks
    Barg, Suelen
    Perez, Felipe Macul
    Ni, Na
    Pereira, Paula do Vale
    Maher, Robert C.
    Garcia-Tunon, Esther
    Eslava, Salvador
    Agnoli, Stefano
    Mattevi, Cecilia
    Saiz, Eduardo
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Low Temperature Casting of Graphene with High Compressive Strength
    Bi, Hengchang
    Yin, Kuibo
    Xie, Xiao
    Zhou, Yilong
    Wan, Neng
    Xu, Feng
    Banhart, Florian
    Sun, Litao
    Ruoff, Rodney S.
    [J]. ADVANCED MATERIALS, 2012, 24 (37) : 5124 - 5129
  • [3] Carbon nanotube aerogels
    Bryning, Mateusz B.
    Milkie, Daniel E.
    Islam, Mohammad F.
    Hough, Lawrence A.
    Kikkawa, James M.
    Yodh, Arjun G.
    [J]. ADVANCED MATERIALS, 2007, 19 (05) : 661 - +
  • [4] Super-compressible foamlike carbon nanotube films
    Cao, AY
    Dickrell, PL
    Sawyer, WG
    Ghasemi-Nejhad, MN
    Ajayan, PM
    [J]. SCIENCE, 2005, 310 (5752) : 1307 - 1310
  • [5] Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge
    Chen, Chaoji
    Song, Jianwei
    Zhu, Shuze
    Li, Yiju
    Kuang, Yudi
    Wan, Jiayu
    Kirsch, Dylan
    Xu, Lisha
    Wang, Yanbin
    Gao, Tingting
    Wang, Yilin
    Huang, Hao
    Gan, Wentao
    Gong, Amy
    Li, Teng
    Xie, Jia
    Hu, Liangbing
    [J]. CHEM, 2018, 4 (03): : 544 - 554
  • [6] High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding
    Chen, Yu
    Zhang, Hao-Bin
    Yang, Yanbing
    Wang, Mu
    Cao, Anyuan
    Yu, Zhong-Zhen
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (03) : 447 - 455
  • [7] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/nmat3001, 10.1038/NMAT3001]
  • [8] Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors
    Choi, Changsoon
    Kim, Kang Min
    Kim, Keon Jung
    Lepro, Xavier
    Spinks, Geoffrey M.
    Baughman, Ray H.
    Kim, Seon Jeong
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles
    Di, Jiangtao
    Zhang, Xiaohua
    Yong, Zhenzhong
    Zhang, Yongyi
    Li, Da
    Li, Ru
    Li, Qingwen
    [J]. ADVANCED MATERIALS, 2016, 28 (47) : 10529 - 10538
  • [10] Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications
    Endo, M
    Kim, YA
    Hayashi, T
    Nishimura, K
    Matusita, T
    Miyashita, K
    Dresselhaus, MS
    [J]. CARBON, 2001, 39 (09) : 1287 - 1297