Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth

被引:41
作者
Christiansen, S. H.
Becker, M.
Fahlbusch, S.
Michler, J.
Sivakov, V.
Andra, G.
Geiger, R.
机构
[1] Univ Halle Wittenberg, D-06109 Halle, Germany
[2] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[3] EMPA, Mat Sci & Technol, CH-3602 Thun, Switzerland
[4] Inst Phys High Technol, D-07745 Jena, Germany
[5] Horiba Jobin Yvon GmBH, D-64625 Bensheim, Germany
关键词
D O I
10.1088/0957-4484/18/3/035503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon nanowires grown by the vapour-liquid-solid growth mechanism with gold as the catalyst show gold caps similar to 50-400 nm in diameter with an almost ideal hemispherical shape atop a silicon column. These gold caps are extremely well suited for exploiting the tip or surface enhanced Raman scattering effects since they assume the right size on the nanometre scale and a reproducible, almost ideal hemispherical shape. On attaching a nanowire with a gold cap to an atomic force microscopy (AFM) tip, the signal enhancement by the gold nanoparticle can be used to spatially resolve a Raman signal. Applications of this novel nanowire based technical tip enhanced Raman scattering solution are widespread and lie in the fields of biomedical and life sciences as well as security (e. g. detection of bacteria and explosives) and in the field of solid state research, e. g. in silicon technology where the material composition, doping, crystal orientation and lattice strain can be probed by Raman spectroscopy. A prerequisite for obtaining this spatial resolution in nano-Raman spectroscopy is the attachment of a nanowire with a gold cap to an AFM tip. This attachment by welding a nanowire in a scanning electron microscope to an AFM tip is demonstrated in this paper.
引用
收藏
页数:6
相关论文
共 28 条
[11]   Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires [J].
Hoffmann, S ;
Utke, I ;
Moser, B ;
Michler, J ;
Christiansen, SH ;
Schmidt, V ;
Senz, S ;
Werner, P ;
Gösele, U ;
Ballif, C .
NANO LETTERS, 2006, 6 (04) :622-625
[12]  
HOFFMANN S, 2006, UNPUB APPL PHYS LETT
[13]  
Hoyt JL, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P23, DOI 10.1109/IEDM.2002.1175770
[14]  
Kneipp K, 2002, TOP APPL PHYS, V82, P227
[15]   Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy [J].
Micic, M ;
Klymyshyn, N ;
Suh, YD ;
Lu, HP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (07) :1574-1584
[16]   The role of tip plasmons in near-field Raman microscopy [J].
Milner, RG ;
Richards, D .
JOURNAL OF MICROSCOPY-OXFORD, 2001, 202 :66-71
[17]   Raman spectroscopy of heavily doped polycrystalline silicon thin films [J].
Nickel, NH ;
Lengsfeld, P ;
Sieber, I .
PHYSICAL REVIEW B, 2000, 61 (23) :15558-15561
[18]   Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy [J].
Pettinger, B ;
Ren, B ;
Picardi, G ;
Schuster, R ;
Ertl, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :096101-1
[19]   Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs [J].
Rim, K ;
Chu, J ;
Chen, H ;
Jenkins, KA ;
Kanarsky, T ;
Lee, K ;
Mocuta, A ;
Zhu, H ;
Roy, R ;
Newbury, J ;
Ott, J ;
Petrarca, K ;
Mooney, P ;
Lacey, D ;
Koester, S ;
Chan, K ;
Boyd, D ;
Leong, M ;
Wong, HS .
2002 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2002, :98-99
[20]   COMPARISON OF SURFACE-ENHANCED RAMAN AND HYPER-RAMAN SPECTRA OF THE TRIPHENYLMETHANE DYES CRYSTAL VIOLET AND MALACHITE GREEN [J].
SCHNEIDER, S ;
BREHM, G ;
FREUNSCHT, P .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1995, 189 (01) :37-42