Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network

被引:34
作者
Chen, Geng [1 ]
Wang, Heyuan [1 ]
Bezold, Alexander [1 ]
Broeckmann, Christoph [1 ]
Weichert, Dieter [2 ]
Zhang, Lele [3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Mat Applicat Mechcm Engn, Augustinerbach 4, D-52062 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Gen Mech, Templergraben 62, D-52062 Aachen, Germany
[3] Beijing Tiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
关键词
Particulate reinforced metal matrix composites (PRMMC); Direct methods (DM); Statistically equivalent representative volume elements (SERVE); Homogenization; Artificial neural network (ANN); WC-Co; NONLINEAR-PROGRAMMING APPROACH; PLASTIC LIMIT ANALYSIS; SHAKEDOWN ANALYSIS; BEHAVIOR; MODEL; MULTIPHASE;
D O I
10.1016/j.compstruct.2019.110951
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Predicting strengths and understanding how these values related to the underlying composite structure is essential for the design and application of particulate reinforced metal matrix composites (PRMMCs). In order to investigate how ultimate strength and endurance limit of an exemplary PRMMC material, WC-20 wt% Co, are related to other structural and mechanical characteristics, an integrated numerical approach consisting of direct methods (DM) and artificial neural network (ANN) is presented in this work. Using few features obtained from elastic and DM analyses as inputs, multiple regression and classification ANNs were established to predict global material strengths. With this approach, the study implied that the distribution pattern of the stress field, in particular the one pertained to the binder phase, has a nontrivial influence over global composite strengths.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Prediction of geogrid-reinforced flexible pavement performance using artificial neural network approach
    Gu, Fan
    Luo, Xue
    Zhang, Yuqing
    Chen, Yu
    Luo, Rong
    Lytton, Robert L.
    ROAD MATERIALS AND PAVEMENT DESIGN, 2018, 19 (05) : 1147 - 1163
  • [32] REVIEW OF ARTIFICIAL NEURAL NETWORK AND TAGUCHI APPLICATION IN POLYMER MATRIX COMPOSITES
    Venkateshwaran, N.
    Elayaperumal, A.
    Alavudeen, A.
    Thiruchitrambalam, M.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2011, 29 (01) : 100 - 103
  • [33] Distribution of stress and strain between adjacent particles in particulate reinforced metal matrix composites
    Liu, Qing
    Qi, Fu-gong
    Ding, Hai-min
    Fan, Xiao-liang
    Yue, Ying
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2018, 28 (11) : 2314 - 2323
  • [34] Mechanical property prediction and configuration effect exploration of particulate reinforced metal matrix composites via an interpretable deep learning approach
    Chai, Xushun
    Su, Yishi
    Lin, Zichang
    Qiu, Caihao
    Liu, Xuyang
    Zhang, Xin
    Yang, Jingyu
    Ouyang, Qiubao
    Zhang, Di
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 925
  • [35] Artificial Neural Network based Prediction of Tensile Strength of Hybrid Composites
    Vineela, Gayatri M.
    Dave, Abhishek
    Chaganti, Phaneendra Kiran
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) : 19908 - 19915
  • [36] Optimization of hybrid aluminum composites wear using Taguchi method and artificial neural network
    Stojanovic, Blaza
    Blagojevic, Jasmina
    Babic, Miroslav
    Velickovic, Sandra
    Miladinovic, Slavica
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2017, 69 (06) : 1005 - 1015
  • [37] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283
  • [38] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [39] Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction
    Zhang, Z
    Klein, P
    Friedrich, K
    COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (7-8) : 1001 - 1009
  • [40] Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites
    Bezerra, E. M.
    Bento, M. S.
    Rocco, J. A. F. F.
    Iha, K.
    Lourenco, V. L.
    Pardini, L. C.
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 44 (02) : 656 - 663