Electronic structure and lattice dynamics of Li2Ni(WO4)2

被引:1
|
作者
Chung, Yun Chen [1 ]
Karna, Sunil K. [2 ]
Chou, Fan-Cheng [2 ]
Liu, Hsiang-Lin [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
关键词
Strongly correlated electron system; Optical spectroscopy; Spin-phonon coupling; TUNGSTATES LI2MII(WO4)(2) M; RAMAN; CO; NI;
D O I
10.1016/j.cjph.2019.05.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We combined spectroscopic ellipsometry and Raman scattering measurements to explore the electronic structure and lattice dynamics in Li2Ni(WO4)(2). The optical absorption spectrum of Li2Ni(WO4)(2) measured at room temperature presents a direct optical band gap at 2.25 eV and two bands near 5.2 and 6.0 eV, which are attributed to charge-transfer transitions from oxygen 2p states to nickel 3d or tungsten 5p states. The Raman scattering spectrum of Li2Ni(WO4)(2) measured at room temperature presents seventeen phonon modes at approximately 112, 143, 193, 222, 267, 283, 312, 352, 387, 418, 451, 476, 554, 617, 754, 792, and 914 cm(-1). When the temperature is decreased to 20 K, the frequency, linewidth, and normalized intensity of all phonon modes exhibited almost no temperature dependence. Upon cooling across 13 K, which is the antiferromagnetic phase transition temperature, the oxygen octahedra stretching mode at 914 cm(-1) exhibited a softening and an increase in intensity, thus suggesting a coupling between the magnetic and lattice degrees of freedom. The spin-phonon coupling constant was estimated to be 0.94 mRy/angstrom(2), indicating a weak spin-phonon interaction in Li2Ni(WO4)(2).
引用
收藏
页码:473 / 480
页数:8
相关论文
共 50 条
  • [21] Microchip laser operation of Tm,Ho:KLu(WO4)2 crystal
    Loiko, Pavel
    Serres, Josep Maria
    Mateos, Xavier
    Yumashev, Konstantin
    Kuleshov, Nikolai
    Petrov, Valentin
    Griebner, Uwe
    Aguilo, Magdalena
    Diaz, Francesc
    OPTICS EXPRESS, 2014, 22 (23): : 27976 - 27984
  • [22] Synthesis and characterization of NaIn(WO4)2:Cr3+ nanoparticles
    Maczka, M.
    Hermanowicz, K.
    Tomaszewski, P. E.
    Zawadzki, M.
    Hanuza, J.
    SOLID STATE SCIENCES, 2008, 10 (01) : 61 - 68
  • [23] Growth and spectral properties of Nd3+:Li3Ba2Y3(WO4)8 crystal
    Li, H.
    Wang, G. J.
    Zhang, L. Z.
    Huang, Y. S.
    Wang, G. F.
    MATERIALS RESEARCH INNOVATIONS, 2010, 14 (05) : 419 - 422
  • [24] Structure, morphology, and optical properties of (Ca1−3xEu2x)WO4 microcrystals
    R. F. Gonçalves
    M. J. Godinho
    A. P. A. Marques
    M. R. C. Santos
    I. L. V. Rosa
    E. Longo
    M. Siu Li
    J. L. S. Sa
    L. S. Cavalcante
    Electronic Materials Letters, 2015, 11 : 193 - 197
  • [25] Optical spectroscopy of NaLa(WO4)2:Dy3+ single crystal
    Wei, Yanping
    Tu, Chaoyang
    Wang, Hongyan
    Yang, Fugui
    Jia, Guohua
    You, Zhenyu
    Lu, Xiuai
    Li, Jianfu
    Zhu, Zhaojie
    Wang, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 438 (1-2) : 310 - 316
  • [26] Spectroscopic properties of Eu3+ :KLa(WO4)2 novel red phosphors
    Rasu, K. Kavi
    Balaji, D.
    Babu, S. Moorthy
    JOURNAL OF LUMINESCENCE, 2016, 170 : 547 - 555
  • [27] Synthesis and Vibrational Characterization of KLa(WO4)2 Crystalline Powders by Modified Pechini Method
    Rasu, K. Kavi
    Durairajan, A.
    Balaji, D.
    Babu, S. Moorthy
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 1147 - 1148
  • [28] Pressure-induced luminescence quenching in KY(WO4)2:Pr3+
    Mahlik, S.
    Diaz, E.
    Boutinaud, P.
    OPTICAL MATERIALS, 2017, 74 : 41 - 45
  • [29] Magnetic and electric characterizations of sol-gel-derived NaFe(WO4)2 rods
    Durairajan, A.
    Venkata Ramana, E.
    Teixeira, B.
    Sobolev, N. A.
    Graca, M. P. F.
    Valente, M. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (09):
  • [30] Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4
    Jia Ming-Zhen
    Wang Hong-Yan
    Chen Yuan-Zheng
    Ma Cun-Liang
    ACTA PHYSICA SINICA, 2016, 65 (05)