Invariant Sylow subgroups and solvability of finite groups

被引:5
作者
Beltran, Antonio [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
Coprime action; Sylow subgroups; Solvable groups;
D O I
10.1007/s00013-015-0844-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and G be finite groups of relatively prime orders and assume that A acts on G via automorphisms. We study how certain conditions on G imply its solvability when we assume the existence of a unique A-invariant Sylow p-subgroup for p equal to 2 or 3.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
[21]   Finite Sylow Subgroups in Simple Locally Finite Groups of Lie Type [J].
M. Kuzucuoglu ;
V. D. Mazurov .
Siberian Mathematical Journal, 2005, 46 :863-866
[22]   Simple Groups and Sylow Subgroups [J].
Harada, Koichiro .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2013, 6 (04) :441-450
[23]   On the number of invariant Sylow subgroups under coprime action [J].
Beltran, Antonio ;
Shao, Changguo .
JOURNAL OF ALGEBRA, 2017, 490 :380-389
[24]   On solvability of finite groups with some ss-supplemented subgroups [J].
Lu, Jiakuan ;
Qiu, Yanyan .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) :427-433
[25]   ON SOLVABILITY OF FINITE GROUPS WITH FEW NON-NORMAL SUBGROUPS [J].
Lu, Jiakuan ;
Meng, Wei .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) :1752-1756
[26]   Nearly m-embedded subgroups and solvability of finite groups [J].
Tang, Juping ;
Miao, Long .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) :3017-3021
[27]   Invariant TI-subgroups or subnormal subgroups and structure of finite groups [J].
Lu, Jiakuan ;
Li, Minghui ;
Zhang, Boru ;
Meng, Wei .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) :3703-3707
[28]   Profinite groups with abelian Sylow subgroups [J].
Lopes, Lucas C. ;
Shumyatsky, Pavel ;
Zalesskii, Pavel A. .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) :224-232
[29]   Invariant TI-subgroups and structure of finite groups [J].
Shao, Changguo ;
Beltran, Antonio .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (04)
[30]   Second Maximal Invariant Subgroups and Solubility of Finite Groups [J].
Shao, Changguo ;
Beltran, Antonio .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024, 12 (01) :45-54