HYPERSPECTRAL TARGET DETECTION USING NEURAL NETWORKS

被引:2
|
作者
Lo, Edisanter [1 ]
Ientilucci, Emmett J. [2 ]
机构
[1] Susquehanna Univ, Dept Math & Comp Sci, Selinsgrove, PA 17870 USA
[2] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
neural network; target detection; hyperspectral imaging; remote sensing;
D O I
10.1109/IGARSS46834.2022.9883130
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Artificial neural networks are designed for classic classification problem, which is different than our goal of target detection. The objective of this paper is to develop an algorithm, based on a one-layer neural network, and assess its performance and utility as a target detection algorithm to detect a subpixel target in a hyperspectral image. The weights are estimated by maximizing the likelihood function of the output variable and are solved numerically using the gradient descent method with a variable step size based on the Lipschitz's constant for the objective function. Experimental results using hyperspectral data are presented so as to assess the performance of the proposed algorithm. Results demonstrated that a single-layer neural network, implemented using the gradient descent method with a variable step size, can detect subpixel objects in hyperspectral imagery.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [21] Subpixel hyperspectral target detection using local spectral and spatial information
    Cohen, Yuval
    Blumberg, Dan G.
    Rotman, Stanley R.
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [22] An assessment of effects of various parameters on target detection using hyperspectral Data
    Yadav, Deepti
    Arora, M. K.
    Tiwari, K. C.
    Ghosh, J. K.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [23] Misregistration impacts on hyperspectral target detection
    Casey, Jason T.
    Kerekes, John P.
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [24] Spectral Discrimination using Neural Network for Target Detection
    Yadav, Deepti
    Arora, Manoj K.
    Tiwari, K. C.
    Ghosh, J. K.
    2015 NATIONAL CONFERENCE ON RECENT ADVANCES IN ELECTRONICS & COMPUTER ENGINEERING (RAECE), 2015, : 154 - 159
  • [25] CRNN: Collaborative Representation Neural Networks for Hyperspectral Anomaly Detection
    Duan, Yuxiao
    Ouyang, Tongbin
    Wang, Jinshen
    REMOTE SENSING, 2023, 15 (13)
  • [26] HYPERSPECTRAL TARGET DETECTION USING MULTIPLE PLATFORM CUING
    Kerekes, John
    Pogorzala, David
    Parkes, John
    Shaw, Arnab
    Rahn, Daniel
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 418 - +
  • [27] Convolutional neural network target detection in hyperspectral imaging for maritime surveillance
    Freitas, Sara
    Silva, Hugo
    Almeida, Jose Miguel
    Silva, Eduardo
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (03):
  • [28] NONPARAMETRIC TARGET DETECTION WITH TARGET STRENGTH ESTIMATION FOR HYPERSPECTRAL IMAGES
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 449 - 452
  • [29] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [30] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131