Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein

被引:39
作者
Chatterjee, PK [1 ]
Eng, CH [1 ]
Kielian, M [1 ]
机构
[1] Albert Einstein Coll Med, Dept Cell Biol, Bronx, NY 10461 USA
关键词
D O I
10.1128/JVI.76.24.12712-12722.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The enveloped allphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction mediated by the El membrane protein. Efficient SFV-membrane fusion requires the presence of cholesterol and sphingolipid in the target membrane. Here we report on two mutants, srf-4 and srf-5, selected for growth in cholesterol-depleted cells. Like the previously isolated srf-3 mutant (E1 proline 226 to serine), the phenotypes of the srf-4 and srf-5 mutants were conferred by single-amino-acid changes in the E1 protein: leucine 44 to phenylalanine and valine 178 to alanine, respectively. Like srf-3, srf-4 and srf-5 show striking increases in the cholesterol independence of growth, infection, membrane fusion, and exit. Unexpectedly, and unlike srf-3, srf-4 and srf-5 showed highly efficient fusion with sphingolipid-free membranes in both lipid- and content-mixing assays. Both srf-4 and srf-5 formed E1 homotrimers of decreased stability compared to the homotrimers of the wild type and the srf-3 mutant. All three srf mutations lie in the same domain of E1, but the srf-4 and srf-5 mutations are spatially separated from srf-3. When expressed together, the three mutations could interact to produce increased sterol independence and to cause temperature-sensitive E1 transport. Thus, the srf-4 and srf-5 mutations identify novel regions of El that are distinct from the fusion peptide and srf-3 region and modulate the requirements for both sphingolipid and cholesterol in virus-membrane fusion.
引用
收藏
页码:12712 / 12722
页数:11
相关论文
共 36 条
[1]   The fusion peptide of semliki forest virus associates with sterol-rich membrane domains [J].
Ahn, A ;
Gibbons, DL ;
Kielian, M .
JOURNAL OF VIROLOGY, 2002, 76 (07) :3267-3275
[2]   MEMBRANE-FUSION OF SEMLIKI FOREST VIRUS IN A MODEL SYSTEM - CORRELATION BETWEEN FUSION KINETICS AND STRUCTURAL-CHANGES IN THE ENVELOPE GLYCOPROTEIN [J].
BRON, R ;
WAHLBERG, JM ;
GAROFF, H ;
WILSCHUT, J .
EMBO JOURNAL, 1993, 12 (02) :693-701
[3]   Biochemical consequences of a mutation that controls the cholesterol dependence of Semliki Forest virus fusion [J].
Chatterjee, PK ;
Vashishtha, M ;
Kielian, M .
JOURNAL OF VIROLOGY, 2000, 74 (04) :1623-1631
[4]   Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system [J].
Corver, J ;
Ortiz, A ;
Allison, SL ;
Schalich, J ;
Heinz, FX ;
Wilschut, J .
VIROLOGY, 2000, 269 (01) :37-46
[5]  
CORVER J, 1998, THESIS GRONINGEN U G
[6]   MUTATIONS IN THE PUTATIVE FUSION PEPTIDE OF SEMLIKI FOREST VIRUS AFFECT SPIKE PROTEIN OLIGOMERIZATION AND VIRUS ASSEMBLY [J].
DUFFUS, WA ;
LEVYMINTZ, P ;
KLIMJACK, MR ;
KIELIAN, M .
JOURNAL OF VIROLOGY, 1995, 69 (04) :2471-2479
[7]  
GAROFF H, 1994, ARCH VIROL, P329
[8]   Formation and characterization of the trimeric form of the fusion protein of Semliki Forest virus [J].
Gibbons, DL ;
Ahn, A ;
Chatterjee, PK ;
Kielian, M .
JOURNAL OF VIROLOGY, 2000, 74 (17) :7772-7780
[9]   Molecular dissection of the semliki forest virus homotrimer reveals two functionally distinct regions of the fusion protein [J].
Gibbons, DL ;
Kielian, M .
JOURNAL OF VIROLOGY, 2002, 76 (03) :1194-1205
[10]   Virus-cell and cell-cell fusion [J].
Hernandez, LD ;
Hoffman, LR ;
Wolfsberg, TG ;
White, JM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :627-661